Math, asked by vikasashwa33, 2 months ago

13. If the vertices of a triangle are (1, 2) (P,
-3) and (-4, q), centrol be at the point (5,
-1), then find the values of p and q.​

Answers

Answered by Anonymous
19

\malteseGiven :-

Vertices of a triangle are (1, 2) , (p, -3) , (-4 , q)

Centroid of a triangle is (5 , -1)

\malteseTo find :-

Value of p, q

\malteseSOLUTION :-

As we know the centroid formula that is

Centroid =\bigg( \dfrac{x_1+x_2+x_3}{3} , \dfrac{y_1+y_2+y_3}{3} \bigg)

x_1 = 1 \\x_2 = p \\x_3= -4

y_1 = 2\\y_2 = -3 \\y_3 = q

Centroid is (5 , -1 ){ATQ}

According to vertices of triangle, Centroid is

\red{\boxed{Centroid =\bigg( \dfrac{x_1+x_2+x_3}{3} , \dfrac{y_1+y_2+y_3}{3} \bigg)}}

Substituting the values ,

Centroid =\bigg( \dfrac{1+p- 4}{3} , \dfrac{2-3+q}{3} \bigg)

Centroid =\bigg(\dfrac{p-3}{3} ,\dfrac{q-1}{3} \bigg)

But According to question it is (5, -1) So,

(5, -1)  =\bigg(\dfrac{p-3}{3} ,\dfrac{q-1}{3} \bigg)

5 =\dfrac{p-3}{3}

-1 = \dfrac{q-1}{3}

5(3) = p-3 \\

15 = p-3

15+3 =p

\red{\boxed{p = 18}}

q- 1= -1(3)\\

q-1 = -3

q = -3+1

\purple{\boxed{q= -2}}

So, the value of p, q are 18, -2

Know more formulae:-

Distance formula:-

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Section formula Internal division:-

\bigg(\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}\bigg)

Section formula External division:-

\bigg(\dfrac{mx_2-nx_1}{m-n}, \dfrac{my_2-ny_1}{m-n}\bigg)

Mid point formula:-

\bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2}\bigg)

Similar questions