13+
If x=
√3-√2
√3+ √2
and y
+ V2
√3-√2
then the value of x² + xy + y2 is
1
Answers
Step-by-step explanation:
Step-by-step explanation:
Given : x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} and y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
We have to find x^2+xy+y^2
First we calculate x^2
Consider x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
We first rationalize the denominator by multiply and divide by {\sqrt{3}+\sqrt{2}}
we get,
x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Simplify, we get,
x=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}\\\\ x=\frac{(\sqrt{3}+\sqrt{2})^2}{3-2}\\\\ x=(\sqrt{3}+\sqrt{2})^2
Thus, squaring both side we get,
x^2=((\sqrt{3}+\sqrt{2})^2)^2
using algebraic identity (a+b)^2=a^2+b^2+2ab , we have,
x^2=(3+2+2\sqrt{6})^2=(5+2\sqrt{6})^2
Similarly, for y^2
Consider y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
We first rationalize the denominator by multiply and divide by {\sqrt{3}-\sqrt{2}}
we get,
x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Simplify, we get,
y=(\sqrt{3}-\sqrt{2})^2
y^2=((\sqrt{3}-\sqrt{2})^2)^2
using algebraic identity (a-b)^2=a^2+b^2-2ab , we have,
y^2=(3+2-2\sqrt{6})^2=(5-2\sqrt{6})^2
then x^2+xy+y^2=(5+2\sqrt{6})^2+(5+2\sqrt{6})(5-2\sqrt{6})+(5-2\sqrt{6})^2
Simplify , we get,