Math, asked by abhinay258, 9 months ago

13. If x+y+z=0, show that x + y + z = 3xyz.​

Answers

Answered by sethrollins13
8

✯✯ QUESTION ✯✯

If x+y+z=0, show that x³ + y³ + z³ = 3xyz.

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{x+y+z={x}^{3}+{y}^{3}+{z}^{3}=3xyz}

Using : -

\longmapsto\tt\bold{{x}^{3}+{y}^{3}+{z}^{3}-3xyz}

Now ,

\longmapsto\tt{{x}^{3}+{y}^{3}+{z}^{3}-3xyz=(x+y+z)({x}^{2}+{y}^{2}+{z}^{2}-xy-yz-zx)}

\longmapsto\tt{{x}^{3}+{y}^{3}+{z}^{3}=0({x}^{2}+{y}^{2}+{z}^{2}-xy-yz-zx}

\longmapsto\tt{{x}^{3}+{y}^{3}+{z}^{3}-3xyz=0}

\longmapsto\tt{{x}^{3}+{y}^{3}+{z}^{3}=3xyz}

HENCE PROVED

Answered by Anonymous
4

Ur Que. is wrong.

It's should be .....

If x+y+z=0, show that x³ + y³ + z³ = 3xyz

We know that,

++z³-3xyz=(x+y+z)(++-xy-yz-zx)

putting x+y+z=0,

++-3xyz=(0)(+y²+-xy-yz-zx)

++-3xyz=0

++=3xyz

Hence proved.

keep smiling

Similar questions