Math, asked by manasijvs, 4 months ago

13. If z is a complex number with
|z= 2 and arg (2) = 4π÷3, then
(a) Express z in a+ib form.
(b) Find z.
(c) Verify that (2)2 = 2z.​

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\mathsf{z\;is\;a\;complex\;number\;with\;|z|=2\;and\;arg(z)=\dfrac{4\pi}{3}}

\underline{\textbf{To find:}}

\mathsf{(a)\;Express\;z\;in\;a+ib\;form}

\mathsf{(b)\;Find\;z}

\mathsf{(c)\;Verify\;that\;z^2=2z}

\underline{\textbf{Solution:}}

\mathsf{(a)}

\mathsf{The\;polar\;form\;of\;z\;is}

\mathsf{z=r[cos\,\theta+i\,sin\,\theta]}

\mathsf{z=2\left[cos\dfrac{4\pi}{3}+i\,sin\dfrac{4\pi}{3}\right]}

\mathsf{z=2\,cos\dfrac{4\pi}{3}+i\,2\,sin\dfrac{4\pi}{3}}

\mathsf{(b)}

\mathsf{z=2\,cos\,240^\circ+i\,2\,sin\,240^\circ}

\mathsf{z=2\left(\dfrac{-1}{2}\right)+i\,2\left(\dfrac{-\sqrt{3}}{2}\right)}

\mathsf{z=-1-i\,\sqrt{3}}

\mathsf{(c)}

\mathsf{z^2}

\mathsf{=(-1-i\,\sqrt{3})^2}

\mathsf{=(1+i\,\sqrt{3})^2}

\mathsf{=1-3+i\,2\sqrt{3}}

\mathsf{=-2+i\,2\sqrt{3}}

\mathsf{=2(-1+i\,\sqrt{3})}

\implies\mathsf{z^2\;{\neq}\;2z}

\underline{\textbf{Find more:}}

Write (a+ib/a-ib)^2-(a-ib/a+ib)^2 in the form x +iy please reply me this

https://brainly.in/question/18153048

Similar questions