Math, asked by musaibssjaigadkar315, 5 months ago

13. In A ABC, seg AD I seg BC
DB = 3CD. Prove that:
2ABP = 2AC2 + BC2 solve and show me​

Answers

Answered by BawliBalika
51

Given:

  • ∆ABC
  • AD⊥BC
  • DB = 3CD

To Prove:

\sf{2AB² = 2AC² + BC²}

Solution:

it is given that,

\sf{DB = 3CB}

\sf{∴ BC = 4CD......(1)}

According to Pythagoras theorem,

in ABD,

\sf{AB² = AD² + DB²}

\sf{⟹AD² = AB² + DB²........(2)}

in ACD,

\sf{AC² = AD² + CD²}

\sf{⟹AC² = (AB² - DB²) + CD² (from (2))}

\sf{⟹AC² = AB² - (3CD)² + CD² (given)}

\sf{⟹AC² = AB² - 9CD² + CD²}

\sf{⟹AC² = AB² - 8CD²}

\sf{⟹AB² = AC² + 8CD²}

\sf{⟹\:AB² = AC² + 8(\frac{BC}{4})²\:\:\:(from (1))}

\sf{⟹\:AB² = AC² + \frac{BC²}{2}}

\sf{⟹\: 2AB² = 2AC² + BC²}

Hence,

\sf\underline\color{pink}{2AB² = 2AC² + BC²}

Proved


BrainIyMSDhoni: Amazing :)
Anonymous: Good
Similar questions