Math, asked by AnushkaWaghmare50, 8 months ago

13. In Figure 13, PQRS is a quadrilateral
in which PQ|| SR and PS||QR.
Prove that angle SPQ = angle SRQ.​

Attachments:

Answers

Answered by Anonymous
10

Answer:

 \red{ \underline{ \huge \bold{Given: }}}

  • PQRS is a quadrilateral
  • in which PQ|| SR and PS||QR.

 \red{ \underline{ \huge \bold{To  \: prove: }}}

  • Angle SPQ = angle SRQ.

 \red{ \underline{ \huge \bold{Solution: }}}

 \sf \: Given \:  that  \: PQ||SR \\ </p><p> \sf \:and  \: PS  \: intersect \:  both  \: parallel \:  lines \\ </p><p> \sf \: =  &gt; ∠SPQ+∠PSR=180° \:  \:  \:  \:  \pink{ Eq 1 }\\ </p><p> \\ </p><p> \sf \:PS||QR  \: is  \: also \:  given \\ </p><p> \sf \:and \:  SR  \: intersect  \: both  \: lines \\ </p><p> \sf \: =  &gt; ∠PSR+∠SPQ =180°   \:  \:  \:  \:  \: \pink{Eq 2}

 \sf \: Equating \:  Eq 1  \: and  \: Eq 2 \\ </p><p></p><p> \sf \:∠SPQ+∠PSR=∠PSR+∠SRQ \\ </p><p> \sf \:Cancelling  \: ∠PSR \:  from  \: both  \: sides \\  \\  \sf∠SPQ+ \cancel{∠PSR}=\cancel{∠PSR}+∠SRQ \\ </p><p> \sf \:∠SPQ=∠SRQ \\ </p><p>  \pink{\sf \:QED ☆</p><p>}\\ </p><p> \pink{ ☆</p><p>\sf \:Hence \:  proved}

Answered by nehakumari6112005
2

Answer:

Answer:

\red{ \underline{ \huge \bold{Given: }}}

Given:

PQRS is a quadrilateral

in which PQ|| SR and PS||QR.

\red{ \underline{ \huge \bold{To \: prove: }}}

Toprove:

Angle SPQ = angle SRQ.

\red{ \underline{ \huge \bold{Solution: }}}

Solution:

\begin{gathered}\sf \: Given \: that \: PQ||SR \\ \sf \:and \: PS \: intersect \: both \: parallel \: lines \\ \sf \: = > ∠SPQ+∠PSR=180° \: \: \: \: \pink{ Eq 1 }\\ \\ \sf \:PS||QR \: is \: also \: given \\ \sf \:and \: SR \: intersect \: both \: lines \\ \sf \: = > ∠PSR+∠SPQ =180° \: \: \: \: \: \pink{Eq 2}\end{gathered}

GiventhatPQ∣∣SR

andPSintersectbothparallellines

=>∠SPQ+∠PSR=180°Eq1

PS∣∣QRisalsogiven

andSRintersectbothlines

=>∠PSR+∠SPQ=180°Eq2

\begin{gathered}\sf \: Equating \: Eq 1 \: and \: Eq 2 \\ \sf \:∠SPQ+∠PSR=∠PSR+∠SRQ \\ \sf \:Cancelling \: ∠PSR \: from \: both \: sides \\ \\ \sf∠SPQ+ \cancel{∠PSR}=\cancel{∠PSR}+∠SRQ \\ \sf \:∠SPQ=∠SRQ \\ \pink{\sf \:QED ☆ }\\ \pink{ ☆ \sf \:Hence \: proved}\end{gathered}

EquatingEq1andEq2

∠SPQ+∠PSR=∠PSR+∠SRQ

Cancelling∠PSRfrombothsides

∠SPQ+

∠PSR

=

∠PSR

+∠SRQ

∠SPQ=∠SRQ

QED☆

☆Henceproved

Similar questions