13. In Figure 13, PQRS is a quadrilateral
in which PQ|| SR and PS||QR.
Prove that angle SPQ = angle SRQ.
Answers
Answer:
- PQRS is a quadrilateral
- in which PQ|| SR and PS||QR.
- Angle SPQ = angle SRQ.
Answer:
Answer:
\red{ \underline{ \huge \bold{Given: }}}
Given:
PQRS is a quadrilateral
in which PQ|| SR and PS||QR.
\red{ \underline{ \huge \bold{To \: prove: }}}
Toprove:
Angle SPQ = angle SRQ.
\red{ \underline{ \huge \bold{Solution: }}}
Solution:
\begin{gathered}\sf \: Given \: that \: PQ||SR \\ \sf \:and \: PS \: intersect \: both \: parallel \: lines \\ \sf \: = > ∠SPQ+∠PSR=180° \: \: \: \: \pink{ Eq 1 }\\ \\ \sf \:PS||QR \: is \: also \: given \\ \sf \:and \: SR \: intersect \: both \: lines \\ \sf \: = > ∠PSR+∠SPQ =180° \: \: \: \: \: \pink{Eq 2}\end{gathered}
GiventhatPQ∣∣SR
andPSintersectbothparallellines
=>∠SPQ+∠PSR=180°Eq1
PS∣∣QRisalsogiven
andSRintersectbothlines
=>∠PSR+∠SPQ=180°Eq2
\begin{gathered}\sf \: Equating \: Eq 1 \: and \: Eq 2 \\ \sf \:∠SPQ+∠PSR=∠PSR+∠SRQ \\ \sf \:Cancelling \: ∠PSR \: from \: both \: sides \\ \\ \sf∠SPQ+ \cancel{∠PSR}=\cancel{∠PSR}+∠SRQ \\ \sf \:∠SPQ=∠SRQ \\ \pink{\sf \:QED ☆ }\\ \pink{ ☆ \sf \:Hence \: proved}\end{gathered}
EquatingEq1andEq2
∠SPQ+∠PSR=∠PSR+∠SRQ
Cancelling∠PSRfrombothsides
∠SPQ+
∠PSR
=
∠PSR
+∠SRQ
∠SPQ=∠SRQ
QED☆
☆Henceproved