Math, asked by sona675, 8 months ago


13. In the given figure, AB || DC, if
x =4/3y,
y=3/8z,
find angle BCD - angls BAD

(A) 10°
(C) 20°
(B) 15°
(D) 30°

This is a question of parallelogram..
the image of the figure is given b

Attachments:

Answers

Answered by giriaishik123
5

Solution:-

Given : AB || DC ; x = 4/3y and y = 3/8z.

AB || DC,

⇒ ∠ ABD = ∠ BDC    (Alternate angles)

In Δ BDC,

x + y + z = 180°

⇒ 4/3y + 3/8z + z = 180°

⇒ First we will solve the 4/3y.

⇒ 4/3y (since he value of y = 3/8z)

⇒ 4/3 × 3/8z

⇒ 12/24z

⇒ 1/2z

Now, 1/2z + 3/8z + z = 180°

⇒ After taking L.C.M. we get,

⇒ (4z + 3z + 8z)/8 = 180°

⇒ 15z/8 = 180°

⇒ 15z = 180 × 8

⇒ z = 1440/15

⇒ z = 96°

y = 3/8z

y = (3 × 96)/8

⇒ y = 288/8

⇒ y = 36°

x= 4/3y

⇒ x = (4 × 36)/3

⇒ x = 144/3

⇒ x = 48°

Answered by ramakrishnaputtagunt
1

Answer:

96 degrees is ur answer

Similar questions