Physics, asked by saherhdr110, 7 months ago

13. Mass of a car is 1000 kg. If its speed increase from
36 km/hr to 72km/hr then find gain in its kinetic energy.
Ans. 1.5 x 1053

Answers

Answered by Anonymous
31

\rm Answer

\rm Given -

\bf m = 1000 kg

\bf u = 36 km/hr

\bf v = 72 km/hr

where

\longrightarrowm is mass of car.

\longrightarrowu is initial velocity.

\longrightarrowv is final velocity.

━━━━━━━━━━━━

\rm To \:find -

Gain in kinetic energy

━━━━━━━━━━━━

\rm Formula\: used -

\boxed{\bf\pink{ Kinetic \:energy =  \frac{1}{2} mv^{2}}}

where

\longrightarrowv is velocity.

\longrightarrowm is mass of object.

━━━━━━━━━━━━

\rm Solution -

Kinetic energy in 1st case -

\longrightarrow\bf m = 1000 kg

\longrightarrow\bf u = 36 km/hr = 10 m/s

\bf Kinetic\: energy = \frac{1}{2} \times m \times {u}^{2}

\implies\bf \frac{1}{2} \times 1000 \times 10^2

\implies\bf\purple{ 50000 kg {m}^{2}/{s}^{2}}

━━━━━━━━━━━━

Kinetic energy in 2nd case -

\longrightarrow\bf m = 1000 kg

\longrightarrow\bf v = 72 km/hr = 20 m/s

\bf Kinetic\: energy = \frac{1}{2} \times m \times {v}^{2}

\implies\bf \frac{1}{2} \times 1000 \times 20^2

\implies\bf\purple{ 200000 kg {m}^{2}/{s}^{2} }

━━━━━━━━━━━━

Gain in kinetic energy

\bf = (\frac{1}{2} m {v}^{2})-(\frac{1}{2} m {u}^{2})

\implies\bf 200000 - 50000

\implies\bf 150000 kg {m}^{2}/{s}^{2}

\implies\bf 1.5 \times 10^5 kg {m}^{2}/{s}^{2}

\sf\red{Gain\: in \:kinetic\: energy = 1.5 \times 10^5 kg {m}^{2}/{s}^{2}}

━━━━━━━━━━━━

Answered by Anonymous
79

\huge{\underline{\mathbb{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

\large\underline\bold\red{Given}

\bf m = 1000 kg

\bf u = 36 km/hr

\bf v = 72 km/hr

where : -

• m \dashrightarrowmass of car.

• u \dashrightarrow initial velocity.

• v \dashrightarrowfinal velocity.

\large\underline\bold\green{To\: find}

• Gain in kinetic energy

\large\underline\bold\red{formula\: we \:use}

\implies\bf Kinetic \:energy =  \frac{1}{2} mv^{2}

where

• v \dashrightarrow velocity.

•m \dashrightarrowmass of object.

\large\underline\bold\red{kinetic\: Energy\:in \:first \: case}

\bf m = 1000 kg

\bf u = 36 km/hr = 10 m/s

\implies\bf Kinetic\: energy = \frac{1}{2} \times m \times {u}^{2}

\implies\bf \frac{1}{2} \times 1000 \times 10^2

\implies\bf 50000 kg {m}^{2}/{s}^{2}

\large\underline\bold\red{kinetic\:Energy\: in\:second \: case }

\implies\bf m = 1000 kg

\implies\bf v = 72 km/hr = 20 m/s

\bf Kinetic\: energy = \frac{1}{2} \times m \times {v}^{2}

\bf \frac{1}{2} \times 1000 \times 20^2

\implies\bf 200000 kg {m}^{2}/{s}^{2}

\impliesGain in kinetic energy

\implies\bf = (\frac{1}{2} m {v}^{2})-(\frac{1}{2} m {u}^{2})

\implies\bf 200000 - 50000

\implies\bf  150000 kg {m}^{2}/{s}^{2}

\implies\bf 1.5 \times 10^5 kg {m}^{2}/{s}^{2}

\large\underline\bold\green{Verified}

Similar questions