13. PQRS is a square of side 6 cm each and T is a mid-point of QR. What is the radius of circle inscribed in triangle TSR ?
Attachments:
Answers
Answered by
0
Answer:
(i) Because PQRS is a square
∠PSR=∠QRS=90
∘
Now In △SRT
∠TSR=∠TRS=60
∘
∠PSR+∠TSR=∠QRS+∠TRS
⟹∠TSP=∠TRQ
Now in △TSP and △TRQ
TS=TR
∠TSP=∠TRQ
PS=QR
Therefore , △TSP≡△TRQ
So PT=QT
(ii) Now in △TQR,
TR=QR(RQ=SR=TR)
∠TQR=∠QTR
And ∠TQR+∠QTR+∠TRQ=180
⟹∠TQR+∠QTR+∠TRS+∠SRQ=180
⟹2(∠TQR)+60+90=180 (∠TQR=∠QTR)
2(∠TQR)=30
⟹∠TQR=15
Similar questions