Math, asked by reddirekha2004, 2 months ago

13. Problem: If a, b, c are nonzero real numbers and a, ß are solutions of the equation
a cos theta +b sin theta =c then show that
1.sin alpha +sin beta = 2bc/a^2+b^2
2.sin alpha. sin beta=c^2-a^2/a^2+b^2​

Answers

Answered by rs967089275
1

Answer:

acosθ+bsinθ=c ...(1)

acos

2

θ+bsin

2

θ+2asinθcosθ=c

a

2

(1+cos2θ)

+b

2

(1−cos2θ)

+asin2θ=c

a+acos2θ+b−bcos2θ+2asin2θ=2c

(a−b)cos2θ+2asin2θ=2c−(a+b) ...(2)

Squaring (1) on both sides

a

2

cos

2

θ+b

2

sin

2

θ+absin2θ=c

2

a

2

2

(1+cos2θ)

+b

2

2

(1−cos2θ)

+absin2θ=c

2

(a

2

−b

2

)cos2θ+2absin2θ=2c

2

−(a

2

+b

2

) ....(3)

From equation (2) sin2θ=

2a

[2c−(a+b)]−[(a−b)cos2θ]

putting in (3)

(a

2

−b

2

)cos2θ+b[(2c−(a+b))−((a−b)cos2θ)]=2c

2

−a

2

−b

2

(a

2

−b

2

)cos2θ+b[2c−a−b−(a−b)cos2θ]=2c

2

−a

2

−b

2

(a

2

−b

2

)cos2θ+2bc−ab−b

2

Step-by-step explanation:

acosθ+bsinθ=c ...(1)

acos

2

θ+bsin

2

θ+2asinθcosθ=c

a

2

(1+cos2θ)

+b

2

(1−cos2θ)

+asin2θ=c

a+acos2θ+b−bcos2θ+2asin2θ=2c

(a−b)cos2θ+2asin2θ=2c−(a+b) ...(2)

Squaring (1) on both sides

a

2

cos

2

θ+b

2

sin

2

θ+absin2θ=c

2

a

2

2

(1+cos2θ)

+b

2

2

(1−cos2θ)

+absin2θ=c

2

(a

2

−b

2

)cos2θ+2absin2θ=2c

2

−(a

2

+b

2

) ....(3)

From equation (2) sin2θ=

2a

[2c−(a+b)]−[(a−b)cos2θ]

putting in (3)

(a

2

−b

2

)cos2θ+b[(2c−(a+b))−((a−b)cos2θ)]=2c

2

−a

2

−b

2

(a

2

−b

2

)cos2θ+b[2c−a−b−(a−b)cos2θ]=2c

2

−a

2

−b

2

(a

2

−b

2

)cos2θ+2bc−ab−b

2

−b(a−b)cos2θ=2c

2

−a

2

−b

2

a

2

cos2θ−b

2

cos2θ+2bc−ab−abcos2θ+b

2

cos2θ=2c

2

−a

2

(a

2

−ab)cos2θ=2c

2

−a

2

+ab−2bc

cos2θ=

a

2

−ab

2c

2

−a

2

+ab−2bc

=

a

2

−ab

2c

2

−2bc−(a

2

−ab)

cos2θ=

a(a−b)

2c(c−b)

−1

θ=

2

1

cos

−1

(

a(a−b)

2c(c−b)

−1)

Similar questions