Math, asked by rohitkumarwadwale, 9 months ago

13) Prove that, 1−tan 45 / 1+tan 45

= 0.​

Answers

Answered by SarcasticL0ve
1

We have to prove \sf \dfrac{1 - tan\;45^\circ}{1 + tan\;45^\circ} = 0.

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that,

\sf tan\;\theta = \dfrac{sin\;\theta}{cos\;\theta}

⠀⠀⠀⠀⠀⠀⠀

\therefore\;\sf tan\;45^\circ = \dfrac{sin\;45^\circ}{cos\;45^\circ}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow\sf tan\;45^\circ = \dfrac{ \frac{1}{ \sqrt{2}}}{ \frac{1}{ \sqrt{2}}}\;\;\;\;\;\;\bigg\lgroup\bf sin\;45^\circ\;and\;cos\;45^\circ = \dfrac{1}{\sqrt{2}} \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow\sf tan\;45^\circ = \dfrac{ \cancel{ \frac{1}{ \sqrt{2}}}}{ \cancel{ \frac{1}{ \sqrt{2}}}}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow\sf tan\;45^\circ = \bf{1}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

:\implies\sf \dfrac{1 - tan\;45^\circ}{1 + tan\;45^\circ}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;value\;of\;tan\;45^\circ}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1 - 1}{1 + 1}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{0}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{\;0\;}}}}}\;\;\;\;\;\;\bigg\lgroup\bf \dfrac{0}{n} = 0\bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

Hence ProvEd!

⠀⠀⠀⠀⠀⠀⠀

\therefore\;\sf \dfrac{1 - tan\;45^\circ}{1 + tan\;45^\circ} = 0

━━━━━━━━━━━━━━━━━━━━━━━━━━

Trigonometric table:

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

Similar questions