Math, asked by nidhiranjn, 7 months ago

13. Prove that cosec A - 2 cot 2A cos A = 2 sin A​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \tt{cosec(A) - 2 \: cot(2A) \: cos(A)}

 \tt{ =  \dfrac{1}{sin(A)} -   \dfrac{2 \: cos(2A)}{sin(2A)} \: cos(A)}

 \tt{ =  \dfrac{1}{sin(A)} -   \dfrac{2 \: cos(2A) \:cos(A) }{2 \: sin(A) \: cos(A)} }

 \tt{ =  \dfrac{1}{sin(A)} -   \dfrac{ cos(2A)  }{ sin(A) } }

 \tt{ =   \dfrac{ 1 - cos(2A)  }{ sin(A) } }

 \tt{ =   \dfrac{ 2 \:  sin^{2} (A)  }{ sin(A) } }

 \tt{ =   2 \:  sin(A)  }

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:cosecA - 2 \: cot2A \: sinA

can be rewritten as

\rm \:  =  \: \dfrac{1}{sinA}  - 2 \times \dfrac{cos2A}{sin2A} \times  sinA

We know,

 \purple{\rm :\longmapsto\: \boxed{\tt{ sin2x = 2 \: sinx \: cosx \: }}}

So, using this above expression can be further rewritten as

\rm \:  =  \: \dfrac{1}{sinA}  - 2 \times \dfrac{cos2A}{2 \: sinA \: cosA}  \times sinA

\rm \:  =  \: \dfrac{1}{sinA}   -  \dfrac{cos2A}{sinA}

\rm \:  =  \: \dfrac{1 - cos2A}{sinA}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x}}}

So, using this, we get

\rm \:  =  \: \dfrac{ {2sin}^{2}A }{sinA}

\rm \:  =  \: 2 \: sinA

Hence,

\rm :\longmapsto\:\boxed{\tt{ cosecA - 2 \: cot2A \: sinA = 2 \: sinA \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\sf{ sin2x = 2sinxcosx =  \frac{2 \: tanx}{1 +  {tan}^{2}x}}}

\boxed{\sf{ cos2x =  {2cos}^{2}x - 1 = 1 -  {2sin}^{2}x =  \frac{1 -  {tan}^{2}x}{1 +  {tan}^{2}x}}}

\boxed{\sf{ tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

\boxed{\tt{ sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{\tt{ cos3x =  {4cos}^{3}x - 3cosx}}

\boxed{\tt{ tan3x =  \frac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2} x}}}

Similar questions