13. The ratio of the heights of two right cones having the same radius of the base is 6:5. Find the ratio
of their (a) volumes and (b) curved surface areas, when each radius of the base is half the height of
the shorter cone.
Answers
Given :-
◉ Ratio of heights of two right cones having the same radius of the base is 6:5
To Find :-
◉ Ratio of thier:
- Volume
- Curved Surface Area
Solution :-
Let the common factor of the ratio be k.
Then, Height of both the cones would be 6k & 5k respectively.
Also, It is given that the radius of base of both the cones is same and it is also equal to half of the height of the shorter cone ( i.e., 5k )
Now, We know
➞ Volume of Cone = 1/3 πr²h
Where, r = radius & h = height
⇒ Volume of Cone₁ = 1/3 π(5k/2)² 6k
⇒ V₁ = π/3 ( 25k²/4 × 6k)
⇒ V₁ = π (25k³ / 2)
⇒ V₁ = 1/2 (25π k³) ...(1)
Similarly,
⇒ Volume of Cone₂ = 1/3 π(5k/2)² 5k
⇒ V₂ = π/3 (25k² / 4 × 5k )
⇒ V₂ = 1/12 (125π k³) ...(2)
So,
⇒ Ratio of Volume = (1) / (2)
⇒ V₁ / V₂ = { 1/2 (25π k³) } / { 1/12 (125π k³) }
⇒ V₁ / V₂ = { 6(25π k³) } / (125π k³)
⇒ V₁ / V₂ = 6 / 5
Again,
➞ Curved Surface Area = πrl
Where, r = radius, l = √(h² + r²) , h = height
⇒ CSA of cone₁ = π(5k/2) √{ (6k)² + (5k/2)²}
⇒ CSA₁ = 5πk / 2 { √169k² / 2 }
⇒ CSA₁ = 5πk/2 × 13k/2
⇒ CSA₁ = 65π k² / 4 ...(3)
Similarly,
⇒ CSA of cone₂ = π(5k/2) √{ (5k)² + (5k/2)² }
⇒ CSA₂ = 5πk/2 { √125k² / 2 }
⇒ CSA₂ = 5πk/2 × 5k√5 / 2
⇒ CSA₂ = 25πk²√5 / 4 ...(4)
Hence,
⇒ Ratio of CSA = (3) / (4)
⇒ CSA₁ / CSA₂ = 1/4(65πk²) / 1/4(25πk²√5)
⇒ CSA₁ / CSA₂ = 65 / 25√5
⇒ CSA₁ / CSA₂ = 13 / 5√5
Therefore,
- Ratio of Volume = 6 : 5
- Ratio of CSA = 13 : 5√5