Math, asked by umapavi17, 9 months ago

13. The ratio of the heights of two right cones having the same radius of the base is 6:5. Find the ratio
of their (a) volumes and (b) curved surface areas, when each radius of the base is half the height of
the shorter cone.

Answers

Answered by DrNykterstein
32

Given :-

◉ Ratio of heights of two right cones having the same radius of the base is 6:5

To Find :-

◉ Ratio of thier:

  1. Volume
  2. Curved Surface Area

Solution :-

Let the common factor of the ratio be k.

Then, Height of both the cones would be 6k & 5k respectively.

Also, It is given that the radius of base of both the cones is same and it is also equal to half of the height of the shorter cone ( i.e., 5k )

Now, We know

➞ Volume of Cone = 1/3 πr²h

Where, r = radius & h = height

⇒ Volume of Cone₁ = 1/3 π(5k/2)² 6k

⇒ V₁ = π/3 ( 25k²/4 × 6k)

⇒ V₁ = π (25k³ / 2)

⇒ V₁ = 1/2 (25π k³) ...(1)

Similarly,

⇒ Volume of Cone₂ = 1/3 π(5k/2)² 5k

⇒ V₂ = π/3 (25k² / 4 × 5k )

⇒ V₂ = 1/12 (125π k³) ...(2)

So,

⇒ Ratio of Volume = (1) / (2)

⇒ V₁ / V₂ = { 1/2 (25π k³) } / { 1/12 (125π k³) }

⇒ V₁ / V₂ = { 6(25π k³) } / (125π k³)

⇒ V₁ / V₂ = 6 / 5

Again,

Curved Surface Area = πrl

Where, r = radius, l = ( + ) , h = height

⇒ CSA of cone₁ = π(5k/2) √{ (6k)² + (5k/2)²}

⇒ CSA₁ = 5πk / 2 { √169k² / 2 }

⇒ CSA₁ = 5πk/2 × 13k/2

⇒ CSA₁ = 65π k² / 4 ...(3)

Similarly,

⇒ CSA of cone₂ = π(5k/2) √{ (5k)² + (5k/2)² }

⇒ CSA₂ = 5πk/2 { √125k² / 2 }

⇒ CSA₂ = 5πk/2 × 5k√5 / 2

⇒ CSA₂ = 25πk²√5 / 4 ...(4)

Hence,

⇒ Ratio of CSA = (3) / (4)

⇒ CSA₁ / CSA₂ = 1/4(65πk²) / 1/4(25πk²√5)

⇒ CSA₁ / CSA₂ = 65 / 25√5

⇒ CSA₁ / CSA₂ = 13 / 5√5

Therefore,

  • Ratio of Volume = 6 : 5
  • Ratio of CSA = 13 : 55
Similar questions