English, asked by nanananana70, 6 months ago

13. The sender transmits the message while the receiver accepts the message.
The most important factor in communication is the good delivery of the message to ensure better
understanding which will result in a satisfying answer. Moreover, the tool in communication is as
important as the message being sent because it is the channel by which the message is delivered.
a. Communication is a process by which a message is transmitted.
b. Communication has three important elements: the sender, the receiver, and the medium.
c. Communication happens when a sender gives information to the receiver.​

Answers

Answered by akumar41864
2

Answer:

Step-by-step explanation:

\LARGE{\bf{\underline{\underline\color{blue}{GIVEN:-}}}}

GIVEN:−

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2} = \dfrac{1-cos}{1+cos}∙

(1+sinA+cosA)

2

(1+sinA−cosA)

2

=

1+cos

1−cos

\LARGE{\bf{\underline{\underline\color{blue}{SOLUTION:-}}}}

SOLUTION:−

LHS:

\sf \to \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}→→

(1+sinA+cosA)

2

(1+sinA−cosA)

2

Expand the fractions using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.

\sf \to \dfrac{(cos^2-2sincos+sin^2-2cos+2sin+1)}{(cos^2+2sincos+sin^2+2cos+2sin+1)}→→

(cos

2

+2sincos+sin

2

+2cos+2sin+1)

(cos

2

−2sincos+sin

2

−2cos+2sin+1)

Rearrange the terms.

\sf \to \dfrac{(cos^2+sin^2-2sincos-2cos+2sin+1)}{(cos^2+sin^2+2sincos+2cos+2sin+1)}→→

(cos

2

+sin

2

+2sincos+2cos+2sin+1)

(cos

2

+sin

2

−2sincos−2cos+2sin+1)

We know that cos²A+sin²A=1.

\sf \to \dfrac{1-2sincos-2cos}{2sin+1}→→

2sin+1

1−2sincos−2cos

Now here, take -2cos common from the numerator and +2cos common from the denominator.

\sf \to \dfrac{1-2cos(sin+2)}{2sin+1}→→

2sin+1

1−2cos(sin+2)

Now, rearrange the terms, add 1 and 1 and take 2 common.

\to\sf\dfrac{1+1+2sin-2cos}{sin+1}→→

sin+1

1+1+2sin−2cos

\to\sf\dfrac{2+2sin-2cos}{sin+1}→→

sin+1

2+2sin−2cos

Take 2 common.

\to \sf \dfrac{ 2(1+sin) -2cos(sin+1) }{ 2(1+sin) + 2cos(sin +1 ) }→→

2(1+sin)+2cos(sin+1)

2(1+sin)−2cos(sin+1)

\to \sf{\red{\dfrac{1-cosA}{1+cosA} }}→ < /p > < p >→

1+cosA

1−cosA

→</p><p>

LHS=RHS.

HENCE PROVED!

FUNDAMENTAL TRIGONOMETRIC RATIOS:

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\ \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}\end{gathered}\end{gathered} \end{gathered}

sin

2

θ+cos

2

θ=1

1+cot

2

θ=cosec

2

θ

1+tan

2

θ=sec

2

θ

T-RATIOS:

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered} \end{gathered}

∠A

sinA

cosA

tanA

cosecA

secA

cotA

0

0

1

0

NotDefined

1

NotDefined

30

2

1

2

3

3

1

2

3

2

3

45

2

1

2

1

1

2

2

1

60

2

3

2

1

3

3

2

2

3

1

90

1

0

NotDefined

1

NotDefined

0

Similar questions
Math, 6 months ago
Accountancy, 11 months ago