Chemistry, asked by anjanamishra621, 11 months ago

13. The sum of the squares of the digits constituting a two-digit number is
10, and the product of the required number by the number consisting of
the same digits written in the reverse order is 403. Find the number.

Answers

Answered by samairasharma1563
4

Answer:

Explanation:

Let n(a,b) be two digit number

Sum of squares of digits =10

a2+b2=10

∴n(a,b)=10a+b

a>0,b>0

(number)×(number with same digits in reverse order)=403

n(a,b)×n(b,a)=403

(10a+b)(10b+a)=403

10(a2+b2)+(101ab)=403

100+101ab=403(∵a2+b2=10)

ab=3

(a+b)2=a2+b2+2ab=16

a+b=4(∵a>0,b>0)

(a−b)2=a2+b2−2ab=4

a−b=±2

a=3,b=1  (or)  a=1,b=3

∴  13  (or)  31  is the required number

please mark it brainliest if it helps

Similar questions