13. Without doing the actual addition, find the sum
of :
(i) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
+ 21 + 23
(ii) 1 + 3 + 5 + 7 + 9 + ................ +39 + 41
(iii) 1 + 3 + 5+ 7 + 9 + ......... +51 + 53
Answers
________________________________
there are 12 numbers which are consecutive odd...therefore we can express them as the Square of total numbers given ...
(i) 12^² = 144
(ii) 21^²= 441
(iii) 27^² = 729
_________________________
i) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
+ 21 + 23
Using Arithmetic Progression
First term (a) = 1
Common difference (d) = 3 - 1 = 2
Last term (l) = 23
Number of terms (n) = 12
We have to find the summative (sum) of the given A.P.
Sn = n/2 (a + l)
→ 12/2 (1 + 23)
→ 6 (24)
→ 144
ii) 1 + 3 + 5 + 7 + 9 + ................ +39 + 41
First term (a) = 1
Common difference = 3 - 1 = 2
Last term (an or l) = 41
an = a + (n - 1)d
OR
l = a + (n - 1)d
41 = 1 + (n - 1)2
40 = (n - 1)2
20 = n - 1
n = 21
Sn = n/2 (a + l)
→ 21/2 (1 + 41)
→ 21/2 (42)
→ 21(21)
→ 441
iii) 1 + 3 + 5+ 7 + 9 + ......... +51 + 53
First term (a) = 1
Common difference = 3 - 1 = 2
Last term (an or l) = 53
an = a + (n - 1)d
OR
l = a + (n - 1)d
53 = 1 + (n - 1)2
52 = (n - 1)2
26 = n - 1
27 = n
Sn = n/2 (a + l)
→ 27/2 (1 + 53)
→ 27/2 (54)
→ 27(27)
→ 729