√(13-x√10= √8+ √5 ) then what is the value of x ?
Answers
Answered by
0
√(13-x√10= √8+ √5 ) then what is the value of x?
√13-x√10= √8+ √5
squaring on both sides (a+b)^2 = a^2 + b^2 + 2ab
(√13)^2 + (x√10)^2 - 2 x√130 = (√8)^2 + (√5)^2 + 2√40
13 + 10 x^2 - 2x√130 = 8 + 5 + 2√40 (sub both side by 13)
10x^2 - 2x√130 = 2√40 (divide both side by 2)
5x^2 - x√130 = √40
√13-x√10= √8+ √5
squaring on both sides (a+b)^2 = a^2 + b^2 + 2ab
(√13)^2 + (x√10)^2 - 2 x√130 = (√8)^2 + (√5)^2 + 2√40
13 + 10 x^2 - 2x√130 = 8 + 5 + 2√40 (sub both side by 13)
10x^2 - 2x√130 = 2√40 (divide both side by 2)
5x^2 - x√130 = √40
5x^2 - x√130 = √40=( -b + (√b2 – 4ac)) / 2a
= (√130 + (130 – 4x5x√40)) /2x5
= √130/10 + (13 - 2√40)
Answered by
1
By squaring both side we get
13-x√10=8+5+2√8√5;
13-x√10=13+2√40 cancel 13 from both side we get,
-x√10=2*2√10
now cancel √10 from both side
we get x=-4
13-x√10=8+5+2√8√5;
13-x√10=13+2√40 cancel 13 from both side we get,
-x√10=2*2√10
now cancel √10 from both side
we get x=-4
Similar questions