Math, asked by shreyahastir, 9 months ago

13sin theta=12find sectheta - tantheta

Answers

Answered by rick3733
0

Answer:

see the answer in Google

Answered by AlluringNightingale
3

Answer :

sec∅ - tan∅ = 1/5

Note :

★ sin∅ = p/h

★ cos∅ = b/h

★ tan∅ = p/b

★ cosec∅ = 1/sin∅ = h/p

★ sec∅ = 1/cos∅ = h/b

★ cot∅ = 1/tan∅ = b/p

★ Pythagoras theorem : In a right angled triangle , h² = p² + b²

Where p = perpendicular

b = base

h = hypotenuse

Solution :

  • Given : 13sin∅ = 12
  • To find : sec∅ - tan∅ = ?

We have ;

=> 13sin∅ = 12

=> sin∅ = 12/13

Here ,

Perpendicular , p = 12

Hypotenuse , h = 13

Now ,

Applying Pythagoras theorem , we have ;

=> h² = p² + b²

=> b² = h² - p²

=> b² = 13² - 12²

=> b² = (13 + 12)•(13 - 12)

=> b² = 25•1

=> b² = 25

=> b = √25

=> b = 5

Now ,

• sec∅ = h/b = 13/5

• tan∅ = p/b = 12/5

Thus ,

=> sec∅ - tan∅ = 13/5 - 12/5

=> sec∅ - tan∅ = (13 - 12)/5

=> sec∅ - tan∅ = 1/5

Hence ,

sec∅ - tan∅ = 1/5

Similar questions