14(3y-5z)^3+7(3y-5z)^2
Answers
Answered by
32
Given 14(3y - 5z)^3 + 7(3y - 5z)^2. ------ (1)
We know that (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.
(3y - 5z)^3 = 3y^3 - 3(3y)^2 * 5z + 3(3y)(5z)^2 - (5z)^3
= 27y^3 - 135y^2z + 225yz^2 - 125z^3. ------ (2)
We know that (a-b)^2 = a^2 + b^2 - 2ab
Then (3y - 5z)^2 = (3y)^2 + (5z)^2 - 2(3y)(5z)
= 9y^2 + 25z^2 - 30yz ---------------- (3)
Substitute (2) & (3) in (1) , we get
= 14(27y^3 - 135y^2z + 225yz^2 - 125z^3) + 7(9y^2 + 25z^2 - 30yz)
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 + 7(9y^2 + 25z^2 - 30yz)
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 + 63y^2 + 175z^2 - 210yz
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 - 210yz + 175z^2.
Hope this helps!
We know that (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.
(3y - 5z)^3 = 3y^3 - 3(3y)^2 * 5z + 3(3y)(5z)^2 - (5z)^3
= 27y^3 - 135y^2z + 225yz^2 - 125z^3. ------ (2)
We know that (a-b)^2 = a^2 + b^2 - 2ab
Then (3y - 5z)^2 = (3y)^2 + (5z)^2 - 2(3y)(5z)
= 9y^2 + 25z^2 - 30yz ---------------- (3)
Substitute (2) & (3) in (1) , we get
= 14(27y^3 - 135y^2z + 225yz^2 - 125z^3) + 7(9y^2 + 25z^2 - 30yz)
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 + 7(9y^2 + 25z^2 - 30yz)
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 + 63y^2 + 175z^2 - 210yz
= 378y^3 - 1890y^2z + 3150yz^2 - 1750z^3 - 210yz + 175z^2.
Hope this helps!
Similar questions