(-14/5x²yz³) × (-3/7× xy²z)
Answers
Answer:
14(3y−5z)
3
+7(3y−5z)
2
=7(3y−5z)
2
(6y−10z+1)
Step-by-step explanation:
Given : Expression 14(3y-5z)^3+7(3y-5z)^214(3y−5z)
3
+7(3y−5z)
2
To find : Factories the expression ?
Solution :
To factor the expression we have to take common from terms,
14(3y-5z)^3+7(3y-5z)^2=7[2(3y - 5z)^3 + (3y - 5z)^2]14(3y−5z)
3
+7(3y−5z)
2
=7[2(3y−5z)
3
+(3y−5z)
2
]
14(3y-5z)^3+7(3y-5z)^2=7(3y - 5z)^2[2(3y - 5z) + 1]14(3y−5z)
3
+7(3y−5z)
2
=7(3y−5z)
2
[2(3y−5z)+1]
14(3y-5z)^3+7(3y-5z)^2=7(3y - 5z)^2[2(3y) - 2(5z) + 1]14(3y−5z)
3
+7(3y−5z)
2
=7(3y−5z)
2
[2(3y)−2(5z)+1]
14(3y-5z)^3+7(3y-5z)^2=7(3y - 5z)^2(6y - 10z + 1)14(3y−5z)
3
+7(3y−5z)
2
=7(3y−5z)
2
(6y−10z+1)
Therefore, 14(3y-5z)^3+7(3y-5z)^2=7(3y - 5z)^2(6y - 10z + 1)14(3y−5z)
3
+7(3y−5z)
2
=7(3y−5z)
2
(6y−10z+1)