Math, asked by muruga232724, 4 months ago

14. A circus artist is climbing a 20 m long rope, which is tightly
stretched and tied from the top of a vertical pole to the ground. Find
the height of the pole, if the angle made by the rope with the ground
level is 30° (see figure)
A
20 m
30°
B
C​

Answers

Answered by singhdisha687
3

Answer:

mark me as brainliest answer and thanks me for the reply

Step-by-step explanation:

Let AB be the vertical pole and CA be the rope. Then,

∠ACB=30

o

and AC=20 m

In right △ ABC,

sin30

o

=

AC

AB

2

1

=

20

AB

AB=10 m

Therefore, the height of the pole is 10 m.

solution

Answered by nakrasameer18
0

Step-by-step explanation:

\mathfrak{ \huge{ \green{ \underline{given}}}} \\  \mathfrak{ \large{ \red{ac \:  =  \: 20 \: m}}} \\  \mathfrak{ \large{ \red{angle \: of \: elevation = {30}^{o}}}} \\  \mathfrak{ \huge{ \green{ \underline{to \: find}}}} \\  \mathfrak{ \large{ \red{height \: of \:  pole \: (h) \: =  \: ?}}} \\ \mathfrak{ \huge{ \green{ \underline{formula \: to \: be \: used}}}} \\  \mathfrak{ \large{ \red{sin \: θ  \:  =  \:  \frac{perpendicular}{hypotenuse} }}} \\  \mathfrak{ \large{ \red{ \sin \:   {30}^{o}  \:  =  \:  \frac{1}{2}  }}} \\  \mathfrak{ \huge{ \green{ \underline{solution}}}} \\  \mathfrak{ \large{ \blue{sin \: θ  \:  =  \:  \frac{perpendiular}{hypotenuse} }}} \\  \mathfrak{ \large{ \blue{ \sin \: c  \:  =  \: \frac{ab}{ac}  }}} \\  \mathfrak{ \large{ \blue{ \sin \:  {30}^{o}  \:  =  \:  \frac{ab}{20}   }}} \\  \mathfrak{ \large{ \blue{ \frac{1}{2} \:  =  \:  \frac{ab}{20}  }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \:  \frac{20}{2} }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \: 10}}} \\  \mathfrak{ \large{ \orange{ \underline{ => height \: of \: pole \:  =  \: 10 \: m}}}}

Attachments:
Similar questions