Math, asked by itsriya26, 5 months ago

14. A hemispherical bowl is made of steel, 0.25 cm thick.
The inner radius of the bowl is 5 cm. Find the outer
curved surface area of the bowl.
(FULL EXPLANATION)​

Answers

Answered by Anonymous
66

Given Parameters :

  • Thickness of the hemispherical bowl is 0.25 cm
  • Inner radius of the bowl is 5 cm.

Unknown :

  • Outer curved surface area of the bowl = ?

Answer :

  • The outer curved surface area of the bowl is 173.25 cm ²

Required Explaination :

★ First of all we need to find the outer radius of the hemispherical bowl :

→ Outer radius = Inner radius + thickness of bowl

→ Outer radius = 5 + 0.25

Outer radius = 5.25 cm

  • Hence,the outer radius of the hemispherical bowl is 5.25 cm.

Now, let's find the outer curved surface area of hemispherical bowl :

  • Let outer radius of hemispherical bowl be "r".

⇒Outer CSA = 2πr²

⇒Outer CSA = 2 × 22/7 × 5.25 × 5.25

⇒Outer CSA = = 1,212.75 ÷ 7

Outer CSA = 173.25 cm²

  • Hence,the outer curved surface area of hemispherical bowl is 173.25 cm².
Answered by Anonymous
105

{\large{\bold{\sf{\bf{\underline{Correct \; question}}}}}}

➨ A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.

{\large{\bold{\sf{\bf{\underline{Given \; that}}}}}}

➨ Thickness of steel which bowl is made = 0.25 cm

➨ The inner radius of the bowl = 5 cm.

{\large{\bold{\sf{\bf{\underline{To \; find}}}}}}

➨ The outer curved surface area of the bowl.

{\large{\bold{\sf{\bf{\underline{Solution}}}}}}

➨ The outer curved surface area of the bowl = 173.25 cm²

{\large{\bold{\sf{\bf{\underline{Full \; solution}}}}}}

~ Let us find the outer radius of bowl

Outer radius = Inner radius + Thickness of bowl

Outer radius = 5 + 0.25

Outer radius = 5.25 cm

{\pink{\frak{Henceforth, 5.25 \: cm \: is \: outer \: radius \: of \: bowl}}}

\rule{150}{2}

~ Let's find the outer curved surface area of the bowl.

Outer CSA = 2πr²

Outer CSA = 2 × 3.14 × 5.25²

Outer CSA = 2 × 3.14 × 5.25 × 5.25

Outer CSA = 2 × 3.14 × 27.5625

Outer CSA = 2 × 86.54625

Outer CSA = 173.25 cm²

{\pink{\frak{Henceforth, 173.25 \: cm^{2} \: is \: outer \: CSA \: of \: bowl}}}

\rule{150}{2}

{\large{\bold{\sf{\bf{\underbrace{Additional \; knowledge}}}}}}

Sphere's diagram –

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf R}\end{picture}

Formulas related to circle

{\large{\pink{\bold{\sf{\bullet \longrightarrow Area \; of \; circle = \pi r^{2}}}}}}

{\large{\pink{\bold{\sf{\bullet \longrightarrow Circumference \; of \; circle = 2 \times \pi \times r}}}}}

{\large{\pink{\bold{\sf{\bullet \longrightarrow Diameter \; of \; circle = 2 \times r}}}}}

{\large{\pink{\bold{\sf{\bullet \longrightarrow Radius \; of \; circle = \dfrac{Diameter}{2}}}}}}

Formulas related to cylinder -

\boxed{\begin{minipage}{6.5 cm}\bigstar$\:\underbrace{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

Diagram

Diagram of this question is given in attachment.

\rule{150}{2}

Attachments:
Similar questions