Physics, asked by gholapvaishnavi08, 4 months ago

14. A stone is tied to one end of string 50 cm long
and is whirled in a horizontal circle with constant
speed. If the stone makes 10 revolutions in 20 s,
then what is the magnitude of acceleration of the
stone :-
(1) 493 cm/s
(2) 720 cm/s
(3) 860 cm/s2
(4) 990 cm/s​

Answers

Answered by Mysterioushine
44

Given :

  • Length of the string = 50 cm
  • Number of revolution made by the stone in 20 sec = 10

To Find :

  • The Magnitude of acceleration of the stone

Solution :

Angular velocity of the stone is given by ;

 \\  \star \: {\boxed{\purple{\sf{ \omega = 2\pi n}}}} \\  \\

Here ,

  • ω is angular velocity
  • n is number of revolutions made per sec

Now , We have ;

  • Here while performing a horizontal circular motion the length of the string becomes the radius. So , r = 50 cm = 0.5 m
  • We are given that number of revolution made by the stone in 20 sec as 10 applying unitary method here , number of revolutions made per sec is 1/2. So , n = 1/2

Now , By applying the formulae ;

 \\  :  \implies \sf \omega = 2  \times 3.14 \times  \frac{1}{2}  \:  {s}^{ - 1}  \\  \\

 \\  :  \implies \sf \omega = 1 \times 3.14 \:  {s}^{ - 1}  \\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{ \omega = 3.14 \:  {s}^{ - 1} }}}}}  \: \bigstar \\  \\

Now , Centripetal acceleration on stone is ;

 \\  \star \: {\boxed{\purple{\sf{a_c =  { \omega}^{2} r }}}} \\  \\

Here ,

  • \sf{a_c} is centripetal acceleration
  • ω is angular velocity
  • r is radius

We have ,

  • ω = 3.14 s⁻¹
  • r = 0.5 m

Substituting the values ;

 \\   : \implies \sf \: a_c =  {(3.14)}^{2}   \times 0.5 \\  \\

 \\  :  \implies \sf \: a_c = 3.14  \:  {s}^{ - 1} \times 3.14 \:   {s}^{ - 1}  \times 0.5 \: m \\  \\

 \\   : \implies \sf \: a_c  \approx 4.93 \: m {s}^{ - 2}  \\  \\

 \\   : \implies \sf \: a_c = 4.93 \times 100 \: cm {s}^{ - 2}  \\  \\

 \\   : \implies{\underline{\boxed{{\pink{\mathfrak{a_c  \approx493 \: cm {s}^{ - 2}  }}}}}}  \: \bigstar \\  \\

Hence ,

  • The magnitude of acceleration on stone is 493 cm/s². So , Option(1) is the required answer.

Answered by VinCus
16

✦Given:-

➨ Radius = 50 cm \:

➨ In 20 seconds the stone makes 10 revolutions.

➨ In 1 seconds the revolution =10/20=1/2

➨ N = 1/2 Hz

_______________________________________

✦To Find:-

➨ The magnitude of acceleration of the stone.

_______________________________________

✦Solution:-

➨ Now,

( Let us use π 3.14)

➨ Angular Velocity ( ω ) = 2πn

➨ ω = 2 × 3.14 × 50

ω = 3.14

Radial Acceleration = ω²r

➨Radial Acceleration = (3.14)² × 50 cm/ s

➨Radial Acceleration = 3.14 × 3.14 × 50 cm/s

Radial Acceleration = 492.98 cm/s = 493 cm/s

Hence, the magnitude of acceleration of the stone is 493 cm/s

_______________________________________

Similar questions