Physics, asked by shubhamshende, 11 months ago

14. An infinite number of charges, each of charge
placed on the x-axis with co-ordinates r = 1,2,4,8
If a charge of 1 C is kept at the origin, then what is the
force acting on 1 C charge?

Answers

Answered by Sharad001
224

Question :-

An infinite number of charges, each of charge \sf  1 \mu \: C placed on the x-axis with co-ordinates r = 1,2,4,8 ....

If a charge of 1 C is kept at the origin, then what is the force acting on 1 C charge?

Answer :-

\to  \boxed{\sf  f = 12 \times   {10}^{3} } \: N \:  \\   \sf or  \\  \:  \to \:  \boxed{\sf \to  f = 12000 \: N} \:

To Find :-

→ Force acting on 1 C charge .

Explanation :-

Given that :

  • Each of charge (q) =  \sf 1 \mu \: C

  • distance between them → 1 ,2 ,4 , ......

According to the question,

→ All charges are at a increasing distance of

→ 1 ,2 ,4 ,8 ..,..( an increasing GP )

We know that -

 \sf \mapsto f =  \frac{1}{ 4 \pi \: ∈_0  }  \frac{q_1 q_2}{ {r_{12}}^{2} }  \\

All charges are same ,

hence ,total Force acting on charges is -

 \mapsto \sf f =  \frac{1 }{ 4 \pi \: ∈_0 \: }    \big\{   \frac{1 \mu}{ {1}^{2} }  +  \frac{1 \mu}{ {2}^{2} }  +  \frac{1 \mu}{ {4}^{2} }  + .... \infty \big \} \\  \\   \mapsto \sf  f =  \frac{1 \times   {10}^{ - 6}  }{ 4 \pi \: ∈_0 }  \big \{ \frac{1}{1}  +  \frac{1}{ {2}^{2} }  +  \frac{1}{ {2}^{4} }  + ... \infty \big \} \:

We know that ,

Sum of infinite GP

 \to \boxed{ \sf \: s =  \frac{a}{a - r} } \\  \\ \sf in \: this \: sequence \:  \\  \:  \\  \to \:  \frac{1}{1}  +  \frac{1}{ {2}^{2} }  +  \frac{1}{ {2}^{4} }  + .... \infty \:  \\  \:  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf first \: term \: (a) = 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \sf  \implies \: common \: ratio \: (r) =  \frac{1}{4}  \\  \\  \therefore \\  \\  \to \sf \:   f =  \frac{1 \times  {10}^{ - 6} }{ 4 \pi \: ∈_0 \: }  \bigg( \frac{1}{ 1 -  \frac{1}{4} }  \bigg) \\  \\  \to \sf    f =  \frac{1 \times  {10}^{ - 6} }{ 4 \pi \: ∈_0 \: }  \bigg( \frac{1  }{  \frac{4 - 1}{4} }  \bigg) \\  \\  \to \: \sf \:   f =  \frac{1 \times  {10}^{ - 6} }{ 4 \pi \: ∈_0 \: }  \bigg( \frac{4}{ 3}  \bigg) \\  \\  \because \boxed{ \sf \frac{1}{ 4 \pi \: ∈_0 \: } = 9 \times  {10}^{9} } \\  \\  \to \sf \: f =  \frac{9 \times  {10}^{9}  \times 4 \times  {10}^{ - 6} }{3}  \\  \\  \to  \boxed{\sf \: f = 12 \times   {10}^{3} } \: N \:  \\   \sf or  \\  \:  \to \:  \boxed{\sf \:  \to \: f = 12000 \: N}

Similar questions