Math, asked by sonalinandan1723, 11 months ago

14)Find quadratic polynomial whose
sum is (-1/5) and product is (1/5)?
*​

Answers

Answered by saharounak093
1

Answer:5x^2+x+1=0

Step-by-step explanation:we know the formula,

x^2-Sx+P=0

S=-1/5

P=1/5

x^2-(-1/5x)+1/5=0

x^2+1/5x+1/5=0

5x^2+x+1=0

Answered by ItzAditt007
1

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr..}}}}}}}}}

{\large{\blue{\bold{\underline{Given:-}}}}}

  • Sum of zeroes = -1/5.

  • Product of zeroes = 1/5.

{\large{\blue{\bold{\underline{To\:Find:-}}}}}

  • The quadratic polynomial.

{\large{\blue{\bold{\underline{Concepts\:Used:-}}}}}

  • Sum of zeroes = -b/a.

  • Product of zeroes = c/a.

  • Form of quadratic polynomial, = k{x²-(sum of zeroes)+(product of zeroes)}, Where k is constant.

Therefore,

▪︎ The required polynomial,

\sf =   {x}^{2} - ( \frac{ - 1}{5})x + ( \frac{1}{5}) \\  \\  = 25 {x}^{2} - ( - 5)x +(5) \\  \\  =  25 {x}^{2}  + 5x + 5 \\  \\  = 5 {x}^{2} + x + 1

Similar questions