14. Find the three consecutive terms in an A. P. whose sum is 18 and the sum of their
squares is 180.
Answers
Answered by
6
Hey there !!
→ Let the required number be ( a - d ) , a , and ( a + d ).
▶Now,
A/Q,
=> ( a - d ) + a + ( a + d ) = 18.
=> a - d + a + a + d = 18.
=> 3a = 18.
=> a =
=> a = 6.
And,
=> ( a - d )² + a² + ( a + d )² = 180.
=> ( a² + d² - 2ad ) + a² + ( a² + d² + 2ad ) = 180.
=> a² + d² - 2ad + a² + a² + d² + 2ad = 180.
=> 3a² + 2d² = 180.
=> 3 × 6² + 2d² = 180. [→ a = 6 ].
=> 3 × 36 + 2d² = 180.
=> 108 + 2d² = 180.
=> 2d² = 180 - 108.
=> 2d² = 72.
=> d² =
=> d² = 36.
=> d = √36.
=> d = ±6.
▶ When taking, a = 6 and d = 6, we get
→ a - d = 6 - 6 = 0.
→ a = 6.
→ a + d = 6 + 6 = 12.
And, when taking, a = 6 and d = -6, we get
→ a - d = 6 - (-6) = 6 + 6 = 12.
→ a = 6.
→ a + d = 6 + (-6) = 6 - 6 = 0.
✔✔ Hence, the required number are ( 0,6,12 ) or ( 12,6,0 ). ✅✅
____________________________________
→ Let the required number be ( a - d ) , a , and ( a + d ).
▶Now,
A/Q,
=> ( a - d ) + a + ( a + d ) = 18.
=> a - d + a + a + d = 18.
=> 3a = 18.
=> a =
=> a = 6.
And,
=> ( a - d )² + a² + ( a + d )² = 180.
=> ( a² + d² - 2ad ) + a² + ( a² + d² + 2ad ) = 180.
=> a² + d² - 2ad + a² + a² + d² + 2ad = 180.
=> 3a² + 2d² = 180.
=> 3 × 6² + 2d² = 180. [→ a = 6 ].
=> 3 × 36 + 2d² = 180.
=> 108 + 2d² = 180.
=> 2d² = 180 - 108.
=> 2d² = 72.
=> d² =
=> d² = 36.
=> d = √36.
=> d = ±6.
▶ When taking, a = 6 and d = 6, we get
→ a - d = 6 - 6 = 0.
→ a = 6.
→ a + d = 6 + 6 = 12.
And, when taking, a = 6 and d = -6, we get
→ a - d = 6 - (-6) = 6 + 6 = 12.
→ a = 6.
→ a + d = 6 + (-6) = 6 - 6 = 0.
✔✔ Hence, the required number are ( 0,6,12 ) or ( 12,6,0 ). ✅✅
____________________________________
Answered by
5
Attachments:
Similar questions
Science,
7 months ago
Math,
7 months ago
English,
7 months ago
Business Studies,
1 year ago
English,
1 year ago