Math, asked by arvindmn29, 5 months ago

14. Find the value of a and b in 3+√7/(3-√7)=a+b√7​

Answers

Answered by devanshidwivedi98
0

Step-by-step explanation:

on rationalising the denominator of 3+√7/3-√7 ,

we get (3+√7)(3+√7)/(3-√7)(3+√7)

=16+6√7/9-7

=16+6√7/2

=8+3√7=a+b√7

on comparison,

we get ,

a=8

b=3

hope it helps

Answered by Akay09
0

Answer:

taking LHS multiple and divide by

3 +  \sqrt{7}

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }

 \frac{(3 +  \sqrt{7) ^{2} } }{ {3}^{2}  -  \sqrt{7 ^{2} } }

 \frac{9 + 7 + 6 \sqrt{7} }{9 - 7}

using the identities

(a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab

and

(a + b)(a - b) = a {}^{2}  + b {}^{2}

we get

 \frac{16  + 6 \sqrt{7} }{2}

taking 2 common

 \frac{2(8 + 3 \sqrt{7} }{2}

=

8 + 3 \sqrt{7}

Now equate this with RHS

a = 8 & b = 3

Similar questions