Math, asked by tusharmavi83, 6 months ago

14. Find the value of Cos30°. Cos 45º - Sin 30°. Sin45°​

Answers

Answered by Anonymous
112

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large{\boxed{\sf{\cos \left(30^{\circ \:}\right)\cos \left(45^{\circ \:}\right)-\sin \left(30^{\circ \:}\right)\sin \left(45^{\circ \:}\right)}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\cos \left(30^{\circ \:}\right)\cos \left(45^{\circ \:}\right)-\sin \left(30^{\circ \:}\right)\sin \left(45^{\circ \:}\right)=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{4}\quad \begin{pmatrix}\mathrm{Decimal:}&0.25881\dots \end{pmatrix}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(30^{\circ \:}\right)=\dfrac{\sqrt{3}}{2}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(45^{\circ \:}\right)=\dfrac{\sqrt{2}}{2}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(30^{\circ \:}\right)=\dfrac{1}{2}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(45^{\circ \:}\right)=\dfrac{\sqrt{2}}{2}

_____________________________________

\sf{=\dfrac{\sqrt{3}}{2}\cdot \dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot \dfrac{\sqrt{2}}{2}}

\huge\boxed{\sf{=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{4}}}

Similar questions