14. Find the values of a and b for which the system of equations
x + y + z = 3,
x + 2 y + 2 z = 6,
x + a y + 3 z= b
have
(i) no solution;
(ii) unique solution; and
(iii) more than one solution.
15.
Answers
Step-by-step explanation:
Step-by-step explanation:If the system of equations has no solution then
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3 is not zero.
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3 is not zero.Δ=
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3 is not zero.Δ= ∣
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3 is not zero.Δ= ∣∣
Step-by-step explanation:If the system of equations has no solution then Δ=0 and at least one of Δ 1 ,Δ 2 and Δ 3 is not zero.Δ= ∣∣∣
l
1
11
111
111
111
111
111
111 a
111 a2
111 a25
111 a25
111 a25
111 a25
111 a25
111 a25 1
111 a25 12
111 a25 123
111 a25 123
111 a25 123
111 a25 123 ∣
111 a25 123 ∣∣
111 a25 123 ∣∣∣
111 a25 123 ∣∣∣∣
111 a25 123 ∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 =
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 1
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 11
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 1
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 12
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 3
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣ =0
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣ =0⟹b
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣ =0⟹b
111 a25 123 ∣∣∣∣∣∣∣∣ =0⟹−a−1=0⟹a=−1Δ 2 = ∣∣∣∣∣∣∣∣ 111 123 36b ∣∣∣∣∣∣∣∣ =0⟹b=9