Math, asked by prerna2804, 5 months ago

14. Find the volume of a cylinder with the following dimensions,
(1) Radius of the base = 14 cm and height = 36 cm
(11) Radius of the base = 21 cm and height = 1.5 m
(111) Diameter of the base = 7 m and height =5 m
(iv) Area of the base = 324 cm? and height = 8 cm
3
plz tell me the full explanation of question 3 and 4 ​

Answers

Answered by Ladylaurel
14

To Find :-

  • The volume of cylinder

Solution :-

Formula used :-

\dag \: \underline{ \boxed{ \bf{ \red{Volume \: of \: cylinder = \pi \:  {r}^{2}h}}}}

1. Radius of the base = 14 cm and height = 36 cm

Answer :-

\bf{Volume  \: of \: cylinder=  \:  \pi {r}^{2}h} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times  {(14)}^{2} \times 36} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times 14 \times 14 \times 36} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{ \cancel{7}} \times  \cancel{14} \times 14 \times 36} \\  \\  \\  \sf{\longrightarrow \:  22 \times 2 \: \times 14 \times 36} \\  \\  \\  \bf{ \longrightarrow \: 22176 {cm}^{3}} \:  \:  \:  \:  \:  \:  \bigstar

2. Radius of the base = 21cm and height = 1.5m [ 150cm = 1.5m ]

Answer :-

\bf{Volume  \: of \: cylinder=  \:  \pi {r}^{2}h} \: \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times  {(21)}^{2} \times 150} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times 21 \times 21 \times 150} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{ \cancel{7}} \times  \cancel{21} \times 21 \times 150} \\  \\  \\  \sf{\longrightarrow \:  22 \times 3 \: \times 21 \times 150} \\  \\  \\  \bf{ \longrightarrow \: 207900 {cm}^{3}} \:  \:  \:  \:  \:  \:  \bigstar

3. Diameter of the base = 7m and height = 5m

Answer :-

First we need to find out the radius,

 \dag \:  \: \underline{\boxed{ \red{\sf{radius =  \dfrac{diameter}{2}}}}}

 \sf{ \longrightarrow \:   \dfrac{7}{2}} \\  \\  \bf{\longrightarrow \: 3.5m}

Radius = 3.5m.

\bf{Volume  \: of \: cylinder=  \:  \pi {r}^{2}h} \:  \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times  {(3.5)}^{2} \times 5} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times 3.5 \times 3.5 \: \times 5} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{ \cancel{7}} \times  \cancel{3.5} \times 3.5 \times 5} \\  \\  \\  \sf{\longrightarrow \:  22 \times 0.5 \: \times 3.5 \times 5} \\  \\  \\  \bf{ \longrightarrow \: 192.5 {m}^{3}} \:  \:  \:  \:  \:  \:  \bigstar

4. Area of the base = 324cm and height = 8cm

Answer :-

First we need to find out the radius,

 \bf{Area \: of \: the \: base = \pi {r}^{2}} \\  \\  \\  \sf{ \longrightarrow \: \dfrac{22}{7} \times \:  {r}^{2} = 324} \\  \\  \\ \sf{ \longrightarrow \:  {r}^{2} =   \dfrac{324 \times 7}{22}} \\  \\  \\ \sf{ \longrightarrow \:  {r}^{2} =   \dfrac{2268}{22}}

Now, Volume of cylinder

\bf{Volume  \: of \: cylinder=  \:  \pi {r}^{2}h} \:  \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times  {\bigg( \frac{2268}{22}\bigg)^{2} } \times 8} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{7} \times \:  \dfrac{2268}{22}  \times  \: \dfrac{2268}{22} \times 8} \\  \\  \\ \sf{\longrightarrow \:  \dfrac{22}{ \cancel{7}} \times  {\dfrac{ \cancel{2268}}{22}} \times \dfrac{2268}{22} \times 8} \\  \\  \\  \sf{\longrightarrow \:   \cancel{22} \times \dfrac{324}{ \cancel{22}} \: \times \: \dfrac{2268}{22} \times 8} \\  \\  \\  \sf{\longrightarrow \: 324\: \times \: \dfrac{2268}{ \cancel{22}} \times  \cancel{8}} \\  \\  \\   \sf{\longrightarrow \:  324 \: \times \: \dfrac{2268}{11} \times 4} \\  \\  \\ \sf{ \longrightarrow \:  \dfrac{2939328}{11}} \\  \\  \\ \bf{ \longrightarrow \:  267211.63 {cm}^{3}} \:  \:  \:  \:  \:  \bigstar

Similar questions