14. If 3x + 2y = 9 and xy = 3, find : 27x³ + 8y³.
Answers
Answered by
4
Solution:
Given,
→ 3x + 2y = 9 and,
→ xy = 3
Using identity a³ + b³ = (a + b)³ - 3ab(a + b), we get,
→ (3x)³ + (2y)³ = (3x + 2y)³ - 3 × 3x × 2y(3x + 2y)
→ 27x³ + 8y³ = 9³ - 18 × 3 × 9
→ 27x³ + 8y³ = 9³ - 9² × 6
→ 27x³ + 8y³ = 9²(9 - 6)
→ 27x³ + 8y³ = 81 × 3
→ 27x³ + 8y³ = 243
★ So, the value of 27x³ + 8y³ is 243.
Answer:
- 27x³ + 8y³ = 243
Additional Identities:
- (a - b)² = a² - 2ab + b²
- (a + b)² = a² + 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
•••♪
Similar questions