Math, asked by freefirelover73, 2 months ago

14. If a - b = 7 and a3 – b3 = 133, find (i) ab (it) a2 + b2.​

Answers

Answered by siddharthsamalcool51
5

Step-by-step explanation:

a-b=7

we know that a^3-b^3= (a-b) (a^2+b^2+ab)

133=7×(a^2+b^2+ab)

133/7=a^2+b^2+ab

19=a^2+b^2+ab

we know that a-b=7

a=b+7

19=(b+7) ^2+b^2+(b+7) b

19=b^2+49+14b+b^2+b^2+7b

19= 3b^2+21b+49

3b^2+21b+30=0

b^2+7b+10=0

b^2+5b+2b+10=0

b(b+5) +2(b+5) =0

(b+2) (b+5) =0

b=(-2, -5)

a=b+7

a=(5, 2)

[ab= -10]

a^2+b^2= (a+b)^2-2ab

(3)^2-2(-10)

9+20

[a^2+b^2=29]

Similar questions