Math, asked by aayushi3569, 9 months ago

14. If a, B and y are the zeroes of the polynomial f(x) = x3 - px2 + x-r, then​

Attachments:

Answers

Answered by Anonymous
5

Value of 1/αβ + 1/βγ + 1/αγ = p/r.

Step-by-step explanation:

Given that :

  • α,β and γ are the zeroes of the cubic Polynomial x³ - px² + x - r = 0

To find :

  • Value of 1/αβ + 1/βγ + 1/αγ

Let :

◼ The general form of cubic polynomial is ax³ + bx² + cx + d = 0.

◼ Consider the given polynomial.

  • a = 1
  • b = - p
  • c = 1
  • d = - 1

Now :

\bf\red{\rightarrow Sum\:of\:the\:zeroes : \alpha +\beta+\gamma = \cfrac{-b}{a} }

\sf \implies \alpha+\beta+\gamma = \cfrac{-(-p)}{1}

\sf \implies \alpha+\beta+\gamma = p

\bf\red{\rightarrow Sum\:of\:the\:product\:of\:the\:zeroes : \alpha \beta + \beta\gamma + \alpha\gamma= \cfrac{c}{a} }

\sf \implies \alpha\beta + \beta\gamma+\alpha\gamma = \cfrac{1}{1}

\sf \implies \alpha\beta + \beta\gamma+\alpha\gamma = 1

\bf\red{\rightarrow Product\:of\:the\:zeroes : \alpha \beta \gamma = \cfrac{c}{a} }

\sf \implies \alpha\beta\gamma = \cfrac{-(-r)}{1}

\sf \implies \alpha\beta\gamma = r

Now :

Find out the value of :-

\sf \cfrac{1}{\alpha\beta} + \cfrac{1}{\beta\gamma} + \cfrac{1}{\alpha\gamma}

\sf \implies \cfrac{1}{\alpha\beta} + \cfrac{1}{\beta\gamma} + \cfrac{1}{\alpha\gamma}

\sf \implies \cfrac{\alpha+\beta+\gamma}{\alpha\beta\gamma}

  • Substitute the zeroes.

\sf \implies \cfrac{p}{r}

\underline{\boxed{\rm{\purple{\therefore Hence,\:the\:value\:of \:  \: \:\cfrac{\alpha +\beta+\gamma}{\alpha\beta\gamma} = \cfrac{p}{r}.}}}}\:\orange{\bigstar}

Similar questions