14. If a + b + c = 15 and a2+ b2+c2=83 then find the value of a3 + b3 + c3 -3abc
Answers
Answered by
1
Answer:
The value of a³+b³+c³ is
Step-by-step explanation:
a+b+c=15,a²+b²+c²=83,a³+b³+c³=x,ab+bc+ca=71 and ab-bc-ca=-71
Substitute the value according to the formulae
Let be [a+b+c]²=a²+b²+c²+2ab+2bc+2ca
[15]²=a²+b²+c²+2[ab+bc+ca]
225=83+2[ab+bc+ca]
225-83/2=ab+bc+ca
ab+bc+ca=71
Let be a³+b³+c³-3abc=[a+b+c][a²+b²+c²-ab-bc-ca]
a³+b³+c³-3abc=[15][83-71]
a³+b³+c³-3abc=180
hence value is 180
Similar questions