Math, asked by anshu1251tushir, 2 months ago

14. If E and F are events such that P ( E ) = 1/4 , P ( F ) = 1/2 and P ( E and F)=1/8 find P ( not E and not F ).

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

 \boxed{ \sf \: P(E) = \dfrac{1}{4} } \: and \:  \boxed{ \sf \: P(F) = \dfrac{1}{2} } \: and \:  \boxed{ \sf \: P(E  \cap \: F) = \dfrac{1}{8} }

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{P(not \: E \: and \: not \: F)}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \: P(E \:  \cup \: F) = P(E) + P(F) - P(E \cap \: F) }

 \boxed{ \sf \: P( \overline{E} \:  \cap \: \overline{F}) =1 -  P(E \:  \cup \: F) }

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{P(E) = \dfrac{1}{4} } \\ &\sf{P(F) = \dfrac{1}{2} }\\ &\sf{P(E \:  \cap \: F) = \dfrac{1}{8} } \end{cases}\end{gathered}\end{gathered}

We know that,

\rm :\longmapsto\:P(E \:  \cup \: F) = P(E) + P(F) - P(E \cap \: F)

On substituting all the given values, we get

\rm :\longmapsto\:P(E \:  \cup \: F) = \dfrac{1}{4}  + \dfrac{1}{2}  - \dfrac{1}{8}

\rm :\longmapsto\:P(E \:  \cup \: F) = \dfrac{2 + 4 - 1}{8}

\rm :\longmapsto\:P(E \:  \cup \: F) = \dfrac{5}{8}

Now,

we have to find the value of P( not E and not F )

That is

\rm :\longmapsto\:P(notE \: and \: notF)

 \sf \:  =  \: P(\overline{E} \:  \cap \:  \: \overline{F})

 \sf \:  =  \: 1 \:  -  \: \:P(E \:  \cup \: F)

 \sf \:  =  \: 1 - \dfrac{5}{8}

 \sf \:  =  \: \dfrac{3}{8}

\overbrace{ \underline { \boxed { \rm \therefore \: P(not \: E \: and \: not \: F)  =  \: \dfrac{3}{8} }}}

Additional Information :-

 \boxed{ \sf \: P(\overline{E}) =1 - P(E)  }

 \boxed{ \sf \: P(E \:  \cap \: \overline{F}) =  P(E) - P(E \:  \cap \: F)}

 \boxed{ \sf \: P(F \:  \cap \: \overline{E}) =  P(F) - P(E \:  \cap \: F)}

 \boxed{ \sf P( \overline{E} \:  \cup \: \overline{F}) =1 -  P(E \:  \cap \: F)}

Similar questions