Math, asked by al2025078, 5 months ago

14. If the radius of a cylinder is r and the height is h,
how will the volume change, if the (a) height is
doubled (b) height is doubled and the radius is
halved and (c) height is same and the radius is
halved..​

Answers

Answered by IdyllicAurora
76

Answer :-

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;of\;Solving\;::}}}

Here the concept of Volume of Cylinder has been used. We are given certain conditions of change in dimensions of cylinder. We can apply them in the formula of Volume of Cylinder and find our answer.

Let's do it !!

_____________________________________________

Formula used :-

\\\;\large{\boxed{\sf{Volume\;of\;Cylinder\;=\;\bf{\pi r^{2}h}}}}

_____________________________________________

Solution :-

Given,

» Radius of the cylinder = r

» Height of the cylinder = h

Then, without changing dimensions of Cylinder, its volume will be :-

\\\;\;\;\;\:\bf{:\mapsto\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi r^{2}h}}

_____________________________________________

a.) ~ For the Volume change of cylinder when height is doubled ::

• Height of the cylinder = 2h

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{\pi r^{2}\:\times\:Height}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi r^{2}\;\times\;2h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{2(\pi r^{2}h)}}

\\\;\;\;\;\:\underline{\boxed{\sf{:\mapsto\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{2(Volume\;of\;Original\;Cylinder)}}}}

\\\;\large{\underline{\underline{\rm{Thus,\;when\;the\;height\;of\;cylinder\;is\;doubled\;then\;its\;volume\;becomes\;\boxed{\bf{Twice}}}}}}

_____________________________________________

b.) ~ For the Volume change of cylinder when height is doubled and radius is halved ::

• Height of Cylinder = 2h

Radius of Cylinder = ½ × r

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:(radius)^{2}\:\times\:Height}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:(\dfrac{r}{2})^{2}\:\times\:2h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:\dfrac{r^{2}}{4}\:\times\:2h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:\dfrac{r^{2}}{2}\:\times\:h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\dfrac{1}{2}\:(\pi r^{2}h)}}

\\\;\;\;\;\:\underline{\boxed{\sf{:\mapsto\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{\dfrac{1}{2}(Volume\;of\;Original\;Cylinder)}}}}

\;\large{\underline{\underline{\rm{Thus,\;when\;the\;height\;is\;twice\;and\;radius\;is\;halved\;then\;volume\;is\;\boxed{\bf{Halved}}}}}}

_____________________________________________

c.) ~ For Volume of cylinder when Radius is halved ::

• Radius of the cylinder = ½ × r

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:(radius)^{2}\:\times\:h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:(\dfrac{r}{2})^{2}\:\times\:h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\pi\:\times\:\dfrac{r^{2}}{4}\:\times\:h}}

\\\;\;\;\;\:\sf{:\Longrightarrow\;\;\;Volume\;of\;Cylinder\;=\;\bf{\dfrac{1}{4}\:(\pi r^{2}h)}}

\\\;\;\;\;\:\underline{\boxed{\sf{:\mapsto\;\;\;New\;Volume\;of\;Cylinder\;=\;\bf{\dfrac{1}{4}(Volume\;of\;Original\;Cylinder)}}}}

\\\;\large{\underline{\underline{\rm{Thus,\;when\;the\;radius\;of\;the\;cylinder\;is\;halved\;then\;its\;volume\;is\;\boxed{\bf{Reduced\;by\;\dfrac{1}{4}\;times}}}}}}

_____________________________________________

More formulas to know :-

\\\;\sf{\leadsto\;\;\;Volume\;of\;Cube\;=\;(Side)^{3}}

\\\;\sf{\leadsto\;\;\;Volume\;of\;Cuboid\;=\;Length\:\times\:Breadth\:\times\:Height}

\\\;\sf{\leadsto\;\;\;Volume\;of\;Cone\;=\;\dfrac{1}{3}\:\times\:\pi r^{2}h}

\\\;\sf{\leadsto\;\;\;Volume\;of\;Hemisphere\;=\;\dfrac{2}{3}\:\pi r^{3}}

\\\;\sf{\leadsto\;\;\;Volume\;of\;Sphere\;=\;\dfrac{4}{3}\:\pi r^{3}}

Answered by Anonymous
31

Given:

  • Radius of the cylinder is r.
  • Height of the cylinder is h,

To find out:

How many times will the volume change if

  • (a) height is doubled.
  • (b) height is doubled and the radius is halve.
  • (c) height is same and the radius is halve.

Solution:

Case 1 :-When the height is doubled

New height of cylinder = 2h

Radius of cylinder =r

Volumeᶜʸˡᶤᶰᵈᵉʳ=πr²(2h) cubic.unit

Volumeᶜʸˡᶤᶰᵈᵉʳ=2(πr²h) cubic.unit

Thus the volume of cylinder doubled when its height is doubled.

Case 2 :- When height is doubled and radius is halved.

New height of cylinder =2h

New radius of cylinder =(r/2)

Volumeᶜʸˡᶤᶰᵈᵉʳ=π (r/2)²× 2h cubic.unit

Volumeᶜʸˡᶤᶰᵈᵉʳ= π ×r²/4×2h cubic.unit

Volumeᶜʸˡᶤᶰᵈᵉʳ= 1/2 πr²h cubic.unit

Thus the volume of cylinder is halve when its height is doubled and its radius is halved.

Case3 :-When height is same and the radius is halved.

Height of cylinder =h

New radius of cylinder= (r/2)

Volumeᶜʸˡᶤᶰᵈᵉʳ=π(r/2)²h cubic.unit

Volumeᶜʸˡᶤᶰᵈᵉʳ= π×r²/4×h cubic.unit

Volumeᶜʸˡᶤᶰᵈᵉʳ=1/4 π r²h cubic.unit

Thus the volume of cylinder is 1/4th when the height is same and radius is halved.

Similar questions