Math, asked by aadepupunthimudhiraj, 6 months ago

14. If the straight line ar+ 3y = 1 intersects the circle +4 at the points A and B, then

find equation of the circle having, AR as diameter.​

Answers

Answered by ItzSwagTamilachee
0

To find the intersection points of circle and the line we need to solve their equations simultaneously.

∵2x+3y=1⇒3y=1−2x⇒y=

3

1−2x

Putting this value of y in equation of circle, x

2

+(

3

1−2x

)

2

=4

⇒9x

2

+1+4x

2

−4x=36⇒13x

2

−4x−35=0

∴x=

2×13

−(−4)±

(−4)

2

−4×13×(−35)

=

26

4±6

51

=

13

2±3

51

∴y=

3

1−2[

13

2±3

51

]

⇒y=

13

3∓2

51

Thus the coordinates of A and B are as follows:- A≡(

13

2+3

51

,

13

3−2

51

) and B≡(

13

2−3

51

,

13

3+2

51

)

Now, equation of circle with ends of diameter given is:-(x−x

1

)(x−x

2

)+(y−y

1

)(y−y

2

)=0

⇒(x−

13

2+3

51

)(x−

13

2−3

51

)+(y−

13

3−2

51

)(y−

13

3+2

51

)=0

⇒x

2

−[

13

2+3

51

+

13

2−3

51

]x+(

13

2+3

51

)(

13

2−3

51

)+

y

2

−[

13

3−2

51

+

13

3+2

51

]y+(

13

3−2

51

)(

13

3+2

51

)=0

⇒x

2

13

4

x+(

169

4−9×51

)+y

2

13

6

y+(

169

9−4×51

)=0

⇒x

2

+y

2

13

4

x−

13

6

y+(

169

4+9−(9+4)×51

)=0

⇒x

2

+y

2

13

4

x−

13

6

y−

13

50

=0

Thus, c=

13

−50

Similar questions