Math, asked by dattatraya07, 3 months ago

14. If x + 1 = 13, then the value of x...
pls answer fast!​

Attachments:

Answers

Answered by prince5132
19

GIVEN :-

  • x + 1/x = 13.

TO FIND :-

  • The value of (x - 1/x).

SOLUTION :-

Firstly we will find the value of x² + 1/x².

\implies \displaystyle \sf \:x +  \frac{1}{x}  = 13

On squaring both the sides we get,

\implies \displaystyle \sf \: \bigg \lgroup x +  \frac{1}{x}  \bigg \rgroup ^{2}  = (13) ^{2}  \\

\implies \displaystyle \sf \:x ^{2}  +  \frac{1}{x ^{2} }   + 2 \times x ^{2}  \times  \frac{1}{x ^{2} }  = 169 \\

\implies \displaystyle \sf \:x ^{2}  +  \frac{1}{x ^{2} } + 2 = 169 \\

\implies \displaystyle \sf \:x ^{2}  +  \frac{1}{x ^{2} } = 169 - 2 \\

\implies \displaystyle \sf \:x ^{2}  +  \frac{1}{x ^{2} } = 167

Now according to the given question,

\implies \displaystyle \sf \: \bigg \lgroup x   -  \frac{1}{x }  \bigg \rgroup ^{2} = x ^{2}  +  \frac{1}{x ^{2} }  - 2 \times x ^{2}  \times  \frac{1}{x ^{2} }  \\

\implies \displaystyle \sf \: \bigg \lgroup x   -  \frac{1}{x }  \bigg \rgroup ^{2} =167 - 2 \\

\implies \displaystyle \sf \: \bigg \lgroup x   -  \frac{1}{x }  \bigg \rgroup ^{2} =165 \\

\implies \underline{ \boxed{\displaystyle \sf \:x -  \frac{1}{x}  =  \pm  \sqrt{165} }}

Hence the correct option is (E) none of the above.


prince5132: Thanks :)
Anonymous: P€RF€CT !
Anonymous: Fantastic prince ! ☺❤
Anonymous: keep rocking. keep helping by ur excellent answer's!
prince5132: Thanks @princy
ItzGullyBoy: bole toh apun ki traph se answer verified
mayankstudent2008: perfect answer sir !!
Anonymous: great answer
prince5132: Thanks :)
Answered by Anonymous
45

Answer:

\sf\huge\red{Given}

\sf{x  \:  +  \:  \frac{1}{x}  = 13}

\sf\huge\red{To \:find}

\sf\large\red{The \: value \: of -  \: x -  \frac{1}{x } }

\sf{Firstly   \:  we  \: will \:  find \:  the \:  value \:  of  \: x²+\frac{1}{ {x}^{2} } }

\sf{x  \:  +  \:  \frac{1}{x}  = 13}

\sf{on \: squaring \: both \: side =>}

\sf{( {x}+  \frac{1}{ {x}   }) ^{2}  =  {(13)}^{2}  } \sf

\sf{ ( {x}+  \frac{1}{ {x}   }) ^{2} + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} } = 169 }

\sf{( {x}^{2} +  \frac{1}{ {x ^{2} }   })  = 169 - 2}

\sf{ {x}^{2} +   \frac{1}{ {x}^{2} }   = 167}

\sf\red{According  \: to  \: Question}

\sf{ {(x -  \frac{1}{x}) }^{2} =  {x}^{2}  + {( \frac{1}{x}) }^{2}  } - 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }

\sf{ {(x -  \frac{1}{x}) }^{2} =  167 - 2} \\   \sf{{(x -  \frac{1}{x}) }^{2}  = 165} \\ \sf{x -  \frac{1}{x}  =  \sqrt{165} }

\sf{So, option \:  C \:  is \:  correct}


Vaibhav1230: Wlcm
xzxy: thanks kariye disha ko ☺️@atharvaPratapSingh
Vaibhav1230: ohh yes
xzxy: hnm
Anonymous: really good answer
kanishkagupta1234: hey
kanishkagupta1234: brilliant answer
mayankstudent2008: yeah brilliant answer !!
Anonymous: thanks
kanishkagupta1234: ☺☺✌✌
Similar questions