Math, asked by anmolvashistha290120, 9 months ago

14. If x = 2-√3, find the value of x²+1/x²​

Answers

Answered by kapilsir19
0

Answer:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} ) ^{2}  - 2 \\  = 2 -  \sqrt{3}  +  \frac{1}{2 -  \sqrt{3} }  - 2\\  = 2 -  \sqrt{3  }  + 2 +  \sqrt{3}  - 2 \\  = 2anssssssssssssssss

Step-by-step explanation:

PLEASE Mark as a result

Answered by dillonbarnes07
1

Answer:

14

Explanation:

x = 2 + √3

1/x = 1/2 + √3

= 1 × (2 - √3)/(2 + √3) (2 - √3)

= (2 - √3)/(2^2 - √3^2)

= (2 - √3)/4 - 3

= (2 - √3)

Therefore ,

x^2 = (2 + √3)

= (2)^2 + (√3)^2 + 2 × 2 × √3

= 4 + 3 + 4√3

= 7 + 4√3

1/x^2 = (2 - √3)^2

= (2)^2 + (√3)^2 - 2 × 2 × √3

= 4 + 3 - 4√3

= 7 - 4√3

x^2 + 1/x^2

= (7 + 4√3) + (7 - 4√3)

= 7 + 4√3 + 7 - 4√3

= 7 + 7 + 4√3 - 4√3

I hope this helps!

Similar questions