Math, asked by Shivamhit, 1 month ago

(14) If X=3+V8,,Find the value of X2-1/X2​

Answers

Answered by umasankarharitha
0

Answer : 33.88

I hope it will help you

Attachments:
Answered by rakeshdubey33
1

128.

Step-by-step explanation:

Given :

x  = 3 +  \sqrt{8}

To find :

The value of ;

 {x}^{2}  -  \frac{1}{ {x}^{2} }

Solution :

 \frac{1}{x}  =  \frac{1}{(3 +  \sqrt{8} )}  \\  \implies \:  \frac{1}{x}  =  \frac{1 \times (3 -  \sqrt{8} )}{(3 +  \sqrt{8} ) \times (3 -  \sqrt{8} )}  \\  \implies \:  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{ {3}^{2}  -  {( \sqrt{8} )}^{2} }  \\  \implies \:  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{9 - 8}  =  3 -  \sqrt{8}

Now,

x +  \frac{1}{x}  = 3 +  \sqrt{8}  + 3 -  \sqrt{8}  = 6

And,

x -  \frac{1}{x}  = 3 +  \sqrt{8}  - 3 +  \sqrt{8}  = 2 \sqrt{8}

Now,

 {x}^{2}  -  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} ) \times (x -  \frac{1}{x} )

Therefore,

 {x}^{2}  -  \frac{1}{ {x}^{2} }  = 6 \times 2 \sqrt{8}  = 12 \sqrt{8}

Hence, the answer is = 128.

Similar questions