Math, asked by CHITIZSINGH, 7 months ago

14. If x - y = 8, xy = 2, find x² + y2.​

Answers

Answered by sanjana1213
2

Answer:

68

Step-by-step explanation:

(x-y)^2= (x^2+y^2) -2xy

8^2=(x^2+y^2)-4

64=(x^2+y^2 )-4

68=x^2+y^2

Answered by Asterinn
5

QUESTION :

If x - y = 8, xy = 2, find x² + y².

___________________

Given :

  • x - y = 8

  • xy = 2

To find :

  • x² + y²

Formula used :

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2} - 2xy

Solution :

We know that :-

{(x - y)}^{2}  =  {x}^{2}  +  {y}^{2} - 2xy

Now put :-

  • x - y = 8
  • xy = 2

\implies {(8)}^{2}  =  {x}^{2}  +  {y}^{2} - 2(2)

\implies 64 =  {x}^{2}  +  {y}^{2} - (2 \times 2)

\implies 64 =  {x}^{2}  +  {y}^{2} - 4

\implies 64  + 4=  {x}^{2}  +  {y}^{2}

\implies 68=  {x}^{2}  +  {y}^{2}

Answer : 68

_____________________

\large\bf\blue{Additional-Information}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

___________________

Similar questions