Math, asked by sarita01670, 1 year ago

14. In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to the
numerator and to the denominator, the new fraction is = . Find the original fraction.​

Answers

Answered by Anonymous
133

Correct Question :-

In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to the numerator and to the denominator, the new fraction is 2/3. Find the original fraction.

Solution :-

Let the numerator be N and denominator

be D.

In a fraction twice the numerator is 2 more than the denominator.

According to question,

=> \sf{2N \:=\: D\: +\: 2}

=> \sf{2N\: - \:2 \:=\: D} ___ (eq 1)

If 3 is added to the numerator and the denominator the new fraction is 2/3.

Now,

  • New numerator = N + 3
  • New denominator = D + 3

According to question,

=> \sf{\dfrac{N\:+\:3}{D\:+\:3}\:=\:\dfrac{2}{3}}

=> \sf{3(N\:+\:3)\:=\:2(D\:+\:3)}

=> \sf{3N\:+\:9\:=\:2D\:+\:6}

=> \sf{3N\:+\:9\:-\:6\:=\:2(2N\:-\:2)}

[From (eq 1)]

=> \sf{3N\:+\:3\:=\:4N\:-\:4}

=> \sf{3N\:-\:4N\:=\:-\:4\:-\:3}

=> \sf{-N\:=\:-7}

=> \sf{N\:=\:7}

Substitute value of N in (eq 1)

=> \sf{2(7)\:-\:2\:=\:D}

=> \sf{14\:-\:2\:=\:D}

=> \sf{D\:=\:12}

•°• Fraction = Numerator/Denominator

= 7/12.

Answered by Anonymous
161

\bold{\underline{\underline{Answer:}}}

Original fraction = \bold{\dfrac{7}{12}}

\bold{\underline{\underline{Step\:-\:by\:-\:step\:explanation:}}}

Given :

  • In a fraction, twice the numerator is 2 more than the denominator.
  • If 3 is added to the
  • numerator and to the denominator, the new fraction is \bold{\dfrac{2}{3}}

To find :

  • The original fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

\bold{\underline{\underline{As\:per\:the\:first\:condition:}}}

  • Twice the numerator is 2 more than the denominator.

Constituting it mathematically,

\rightarrow \bold{2x=y+2}

\rightarrow \bold{2x-y =2} ----> (1)

\bold{\underline{\underline{As\:per\:the\:second\:condition:}}}

  • If 3 is added to the
  • numerator and to the denominator, the new fraction is \bold{\dfrac{2}{3}}

° Numerator = x + 3

Denominator = y + 3

Fraction = \bold{\dfrac{2}{3}}

Constituting it mathematically,

\rightarrow \bold{\dfrac{x+3}{y+3}} = \bold{\dfrac{2}{3}}

Cross multiplying,

\rightarrow \bold{3(x+3)= 2(y+3)}

\rightarrow \bold{3x+9= 2y+6}

\rightarrow \bold{3x-2y= 6-9}

\rightarrow \bold{3x-2y= -3} ----> (2)

Multiplying equation 1 by 2,

\bold{4x-2y=4} ---> (3)

Solve equation 2 and equation 3 simultaneously by elimination method.

Subtract equation 2 from equation 3,

4x - 2y = 4 ----> (3)

3x - 2y = - 3 ----> (2)

-----------------

x = 7

Substitute x = 7 in equation 3,

4x - 2y = 4

\rightarrow \bold{4(7)-2y=4}

\rightarrow \bold{28-2y=4}

\rightarrow \bold{-2y=4-28}

\rightarrow \bold{-2y=-24}

\rightarrow \bold{y=\:{\dfrac{-24}{-2}}}

\rightarrow \bold{y=12}

\bold{\boxed{\blue{\rm{Numerator=x=7}}}}

\bold{\boxed{\blue{\rm{Denominator=y=12}}}}

\bold{\sf{\blue{\boxed{Fraction\:=\:{\sf{\frac{x}{y}}\:=\:{\sf{\dfrac{7}{12}}}}}}}}

Similar questions