Math, asked by KanakP, 5 months ago

14) In a regular polygon, each interior angle is
four times the exterior angle. Find the
number of sides of the polygon.



The correct answer will be marked as brainliest..​

Answers

Answered by sanjayh123
1

Answer:

you get interior angle = 4 * exterior angle = 4 * 36 = 144 degrees. 144 + 36 = 180 degrees so they are supplementary as required. the exterior angle of the regular polygon is equal to 360 / number of sides. solve for number of sides to get number of sides = 360 / exterior angle = 360 / 36 = 1

★★★★★★★★★★★★★★★★★★★★★★★★★★★★

Mark me as brainliest

Answered by suraj5070
451

 \huge{\boxed {\mathbb{QUESTION}}}

In a regular polygon, each interior angle is

four times the exterior angle. Find the

number of sides of the polygon.

 \huge{\boxed {\mathbb {ANSWER}}}

 Let\:exterior \:angle\:be\:x

 Let\:interior \:angle\:be\:4x

 \implies x+4x={180}^{\circ} (linear\:pair)

 \implies5x={180}^{\circ}

\implies x=\frac{180}{5}

\implies{\boxed {x={36}^{\circ} }}

 Sum \:of\:the\:angles \:in\:a\:polygon\:is\:{360}^{\circ}

 \implies \frac{360}{x}

 \implies \cancel \frac{360}{36}

 \implies {\boxed {\boxed {{10}^{\circ} }}}

 \huge{\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

__________________________________

 \huge{\boxed {\mathbb {EXTRA\:INFORMATION }}}

 Linear\:pair={180}^{\circ}

 Sum \:of\:the\:angles \:in\:a\:polygon\:is\:{360}^{\circ}

 Area\: of \:rectangle =length \times breadth

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions