14. In how many different ways the letters of the word ALGEBRA can be arranged in a row if
(i) the two A's are together?
(ii) the two A's are not together?
Answers
Answered by
28
Sol: In a word ALGEBRA have 2 A's and 5 different letters are there.
1) Two A's will take 1 unit and 5 letters will take 5 units then total number units = 6.
These can be arranged in 6! = 6x5x4x3x2x1 = 720 ways.
2) The number of arrangements in which two A's together is = 720 ways.
The number of arrangements with out any restriction = 7! / 2! = 2520 ways.
The required number of arrangements if two A's are not together = 2520 - 720 = 1800 ways.
Hope it helps!
Follow me. .
Thnkyu!
HAVE A GREAT DAY!
Answered by
3
Answer:
Above attached is the answer of your question.
HOPE IT HELPS :))
Attachments:
Similar questions
Chemistry,
2 months ago
Social Sciences,
2 months ago
Math,
2 months ago
Math,
9 months ago
English,
9 months ago