14). In ΔPQR and ΔDEF, if PQ:XY=PR:ZX,
Then ΔPQR∼ΔDEF when In ΔPQR and ΔDEF, if
PQ:XY=PR:ZX, then ΔPQR ΔDEF when
Answers
Answer:
Let AD,BE and CF meet at O. We take O as the origin.
Let the coordinates of points A,B and C be (x
1
,y
1
), (x
2
,y
3
) and (x
3
,y
3
), respectively.
And let D divide BC in the ratio k:1 i.e.,
DC
BD
=
1
k
Then, by intersection formula
D≡(
k+1
k(x
3
)+1(x
2
)
,
k+1
k(y
3
)+1(y
2
)
)
D≡(
k+1
kx
3
+x
2
,
k+1
ky
3
+y
2
)
Also A and O lies on line AD .
So, equation of the line AD is
y−0=(
x
1
−0
y
1
−0
)(x−0)
or
y=
x
1
y
1
x (i)
SinceDliesonAD,itwillsatisfyequation(i)$$
So,
k+1
ky
3
+y
2
=
x
1
y
1
(
k+1
kx
3
+x
2
)
kx
1
y
3
+x
1
y
2
=kx
3
y
1
+x
2
y
1
⇒k(x
1
y
3
−x
3
y
1
)=x
2
y
1
−x
1
y
2
⇒k=
DC
BD
=
x
1
y
3
−x
3
y
1
x
2
y
1
−x
1
y
2
(ii)
Similarly, we can prove for line CA and AB that,
EA
CE
=
x
2
y
1
−x
1
y
2
x
3
y
2
−x
2
y
3
(iii)
and
FB
AF
=
x
3
y
2
−x
2
y
3
x
1
y
3
−x
3
y
1
(iv)
From (i),(ii) and (iii), we get
DC
BD
×
EA
CE
×
FB
AF
=1
or
BD×CE×AF×=DC×EA×FB
please mark me as brainliest please