14. In the figure, quadrilateral ABCD is circumscribing a circle with centre O an
AD 1 AB. If radius of the incircle is 10cm, then find the value of x?
[3]
27 cm
38 am
P
x cm
15. In the given figure, PA and PB are tangents to a circle with centre O drawn
from an external point P. QR is a tangent at point S. Prove that PQ+ QS =P
Answers
Answered by
0
Step-by-step explanation:
Given−Oisthecentreofacircle,inscribedinaquadrilateral
ABCD.
Theradiusofthecircleis10cm.
∠BAD=90
o
.
AB,BC,CD&ADtouchtheinscribedcircleatP,Q,R&S
respectively.
CR=27cmandBC=38cm.
Tofindout−
AB=x=?
Solution−
WejoinOS&OP.ThenOS&OPareradiiofthe
inscribedcirclethroughthepointsofcontactofthetangents
AS&APrespectively.
∴OS=OP=10cm.
Again∠OSA=90
o
=∠OPAsincetheradiusthroughthepointof
contactofatangenttoacircleisperpendiculartothetangent.
NowinOSAP,∠OSA=90
o
=∠OPAandOS=OP=10cm.
∴OSAPisasquareofside10cm.
SoAP=OS=10cm.
AgainCR=CQ=27cmandBQ=BPsincethelengthsofthetangents,
fromapointtoacircle,areequal.
∴BQ=BC−CQ=(38−27)cm=11cm.
AlsoBP=BQ=11cm.
∴AB=x=AP+BP=(10+11)cm=21cm.
Similar questions
Math,
3 months ago
Social Sciences,
3 months ago
Math,
3 months ago
Math,
7 months ago
Math,
7 months ago
Science,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago