Physics, asked by shatakshigupta27, 4 months ago

14. Judge the equivalent resistance when the following are connected in parallel :
(a) 1ohm and 10^6ohm
(6) 1 ohm and 10^3 ohm and 10^6 ohm​

Answers

Answered by BrainlyTwinklingstar
16

Given :

(a) Two resistor are connected in parallel

  • R₁ = 1 ohm
  • R₂ = 10⁶ ohm

(b) Three resistors are connected in parallel

  • R₁ = 1 ohm
  • R₂ = 10³ ohms
  • R₃ = 10⁶ ohms

To find :

The equivalent resistance of the connection.

Solution :

» The reciprocal of the combined resistance of a number of resistance connected in parallel is equal to the sum of the reciprocal of all the individual resistances. .i.e.,

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1}{R_1} + \dfrac{1}{R_2}

By substituting the values in the formula,

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1}{R_1} + \dfrac{1}{R_2}

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1}{1} + \dfrac{1}{ {10}^{6} }

\dashrightarrow \sf  \dfrac{1}{R _{eq} } =   \dfrac{ {10}^{6}  + 1}{ {10}^{6} }

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1000001}{1000000}

\dashrightarrow \sf R _{eq}  =\dfrac{1000000}{1000001}

\dashrightarrow \sf R _{eq}=0.999999  \: ohms

\dashrightarrow \sf R _{eq}=1 \:   \: ohm \: (approx)

similarly,

(b) By substituting R₁ = 1 Ω, R₂ = 10³Ω and R₃ = 10⁶

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{1}{1} + \dfrac{1}{ {10}^{3} } + \dfrac{1}{ {10}^{6} }

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{ {10}^{6} +  {10}^{2}   + 1}{ {10}^{6} }

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{ 1000000 + 100 + 1 }{ 1000000}

\dashrightarrow \sf \dfrac{1}{R _{eq} } =\dfrac{ 1000101 }{ 1000000}

\dashrightarrow \sf R _{eq}  =\dfrac{ 1000000}{ 1000101}

\dashrightarrow \sf R _{eq}  =1.0001 \: ohms

\dashrightarrow \sf R _{eq}  =1\: ohm

Similar questions