14.Let A = X belongs W/X<2 , B= X belongs N/1<x less than or equal to 4 and C= 3,5 verify that (AUB) x C = (AxC) U (BxC)
Answers
Step-by-step explanation:
Given :-
A = { X:X€W,X<2 }
B = { X:X€N,1<X≤4 }
C = { 3,5 }
To find :-
Verify that (AUB) x C = (AxC) U (BxC) ?
Solution :-
Given that
A = { X:X€W,X<2 }
=> A = { 0,1 }
B = { X:X€N,1<X≤4 }
=> B = { 2,3,4 }
C = {3,5}
Now
I) (AUB)× C :-
AUB = { 0,1 } U { 2,3,4 } = { 0,1,2,3,4 }
(AUB) × C
=> {0,1,2,3,4} × {3,5}
=> { (0,3),(0,5),(1,3),(1,5),(2,3),(2,5),(3,3),(3,5),
(4,3),(4,5)} ---------------(1)
II) (A×C) U (B×C) :-
A×C = { 0,1 } × { 3,5 }
=> { (0,3),(0,5),(1,3),(1,5) }
B×C = { 2,3,4 } × { 3,5 }
=> { (2,3),(2,5),(3,3),(3,5),(4,3),(4,5) }
(A×C) U (B×C)
=> { (0,3),(0,5),(1,3),(1,5) } U { (2,3),(2,5),(3,3),(3,5),(4,3),(4,5) }
=> { (0,3),(0,5),(1,3),(1,5),(2,3),(2,5),(3,3),(3,5),
(4,3),(4,5)} ---------------(2)
From (1) & (2)
(AUB) x C = (AxC) U (BxC)
Answer:-
Verified (AUB) x C = (AxC) U (BxC)
Used formulae:-
→ AUB is the set of elements in either A or in B or in both A and B.
→ AUB = { X: X€A or X€ B }
→ A×B is the set of all order pairs in which First element belongs to first set and second element belongs to second set.
→ A×B = { (a,b) : a € A and b € B }
→ Where, € represents " belongs to "
→ N is the set of natural numbers.
→ N = { 1,2,3,...}
→ W is the set of whole numbers
→ W = { 0,1,2,3,...}