Math, asked by ashishgrover68, 8 months ago

14 power n+4 +7 power n+3* 2 power n+3 upon 13*14 n +14 n

Answers

Answered by qwwestham
2

QUESTION:

Find the value of \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} .

ANSWER:

The value of the given expression \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} will be 2940.

Given,

Expression:

\frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} .

To find,

Value of the given expression.

Solution,

We can see that the given expression here, is

\frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} .

To find the value of the above expression, we need to use some of the rules of exponents, which are as follows.

  • a^{m+n}=a^ma^n
  • a^m \times b^m=(a\times b)^m

So, we can express the given expression as

\frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} =\frac{14^n \times 14^4+(14^{n+3})}{14^n \times (13+1)}

\implies \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} =\frac{14^n \times 14^4+14^n\times 14^3}{14^n \times 14}

\implies \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} =\frac{14^n \times 14^3(14+1)}{14^n \times 14}

\implies \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} =14^2(15) = 196 \times 15

\implies \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} =2940.

Therefore, the value of the given expression \frac{14^{n+4} +(7^{n+3} \times 2^{n+3})}{(13 \times 14^n) +14^n} will be 2940.

#SPJ3

Similar questions