14. Prove that : cos10 cos30° cos50° cos70° = 3/16
Answers
Answer:
Step-by-step explanation:
Given:
cos 10°. cos 30°. cos 50°. cos 70° = 3/16
To Prove:
LHS = RHS
Proof:
Consider the LHS of the equation,
cos 10°. cos 30°. cos 50°. cos 70°
We know that,
cos 30° = √3/2
Hence,
⇒ cos 10° × √3/2 × cos 50° × cos 70°
⇒ √3/2 × (cos 50° × cos 10°) × cos 70°
Multiplying and dividing by 2
⇒ √3/2 × 2/2 (cos 50° × cos 10°) × cos 70°
⇒ √3/4 × 2 (cos 50° × cos 10°) × cos 70°
We know that,
2 cosx cosy = cos (x - y) + cos (x + y)
Applying the identity,
⇒ √3/4 × (cos (50° - 10°) + cos (50° + 10°) ) × cos 70°
⇒ √3/4 × ( cos 40° + cos 60°) × cos 70°
We know,
cos 60° = 1/2
⇒ √3/4 × ( cos 40° + 1/2) × cos 70°
⇒ √3/4 × ( cos 40° cos 70° + 1/2 × cos 70°)
Again multiplying and dividing by 2,
⇒ √3/4 × (2/2 × cos 40° cos 70° + 1/2 cos 70°)
Applying the above identity again,
⇒ √3/4 × [1/2 ( cos (40° - 70°) + cos (40° + 70°) + 1/2 cos 70°]
⇒ √3/4 × [1/2 × (cos -30° + cos 110°) + 1/2 cos 70°]
We know,
cos (-θ) = cos θ
⇒ √3/4 × [1/2 × (cos 30° + cos 110°) + 1/2 cos 70°]
Substitute the value of cos 30°
⇒ √3/4 ( 1/2 × (√3/2 + cos 110°) + 1/2 cos 70°)
⇒ √3/4 (√3/4 + 1/2 × cos 110° + 1/2 cos 70°)
Now,
cos 110° = cos (180° - 70°)
Here cos lies in the second quadrant and is negative
cos 110° = -cos 70°
Substitute the value above,
⇒ √3/4 ( √3/4 + 1/2 × - cos 70° + 1/2 × cos 70°)
⇒ √3/4 ( √3/4 + 1/2 × cos 70° - 1/2 cos 70°)
⇒ √3/4 × √3/4
⇒ 3/16
= RHS
Hence proved.
Answer: